畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3701-3721.doi: 10.11843/j.issn.0366-6964.2025.08.014
李晓蝶1(), 潘诗琴1, 王鲁2, 程振涛1,3, 欧德渊1,3, 宋旭琴1,3,*(
), 杨剑1,3,*(
)
收稿日期:
2024-10-28
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
宋旭琴,杨剑
E-mail:gs.xdli22@gzu.edu.cn;xqsong@gzu.edu.cn;cas.jyang@gzu.edu.cn
作者简介:
李晓蝶(1999-),女,贵州毕节人,硕士生,主要从事中兽药开发与利用研究,E-mail:gs.xdli22@gzu.edu.cn
基金资助:
LI Xiaodie1(), PAN Shiqin1, WANG Lu2, CHENG Zhentao1,3, OU Deyuan1,3, SONG Xuqin1,3,*(
), YANG Jian1,3,*(
)
Received:
2024-10-28
Online:
2025-08-23
Published:
2025-08-28
Contact:
SONG Xuqin, YANG Jian
E-mail:gs.xdli22@gzu.edu.cn;xqsong@gzu.edu.cn;cas.jyang@gzu.edu.cn
摘要:
中兽药在动物临床实践中已证实其疗效与安全性,但其抗炎作用的分子机制尚不完全明确。网络药理学的不断进步与广泛应用为预测中兽药治疗相关疾病的药效物质基础及作用机制提供了有利工具,已成为研究的新趋势。本综述旨在系统梳理基于网络药理学方法探究中兽药治疗炎症性疾病作用机制的研究进展,使用CiteSpace文献计量学方法,分别从中国学术期刊全文数据库(CNKI)、万方数据知识服务平台、维普生物医学数据库(VIP)、PubMed和Web of Science数据库中,收集相关中英文文献,整理去重后采用CiteSpace软件分别对中英文文献的发文量、作者、发文机构和关键词进行统计和分析;除此之外,总结归纳了中兽药研究常用数据库以及中兽药发挥抗炎作用的主要活性成分、作用靶点及相关信号通路,进一步对网络药理学研究中存在的问题进行阐述,并对其在中兽药研究领域的应用前景进行展望,以期为中兽药的现代化研究提供科学依据和新的思路。
中图分类号:
李晓蝶, 潘诗琴, 王鲁, 程振涛, 欧德渊, 宋旭琴, 杨剑. 基于网络药理学的中兽药抗炎作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3701-3721.
LI Xiaodie, PAN Shiqin, WANG Lu, CHENG Zhentao, OU Deyuan, SONG Xuqin, YANG Jian. Research Progress on the Anti-inflammatory Mechanism of Traditional Chinese Veterinary Medicine based on Network Pharmacology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3701-3721.
表 1
中兽药网络药理学常用数据库"
类型 Types | 名称 Names | 网址 Websites | 介绍 Introduction | 功能 Function |
天然药物数据库 Natural medicines database | TCMSP(Traditional Chinese Medicine Systems Pharmacology) | 用于获取药物、靶点和疾病之间的关系的中医系统药理平台。 | 搜索草药信息,每种化合物的ADME数据、靶标以及疾病信息。 | |
TCMID(Traditional Chinese Medicines Integrated Database) | 促进中医研究和临床调查的关键数据资源中心。 | 收集了配方、草药和草药成分以及疾病等各个方面的信息。 | ||
BATMAN-TCM(Bioinformatics Annotation daTabase for Molecular mechANism of Traditional Chinese Medicine) | 对作用靶点的作用通路和疾病进行相关联系的中药靶点数据库。 | 旨在存储中药成分和目标蛋白质之间的已知和预测联系。 | ||
ETCM(The Encyclopedia of Traditional Chinese Medicine) | 整合中医常用草药和配方及其成分的全面和标准化信息的数据库。 | 提供了中药成分、草药和方剂的预测靶基因及其与疾病之间的关系。 | ||
HERB(Herbal Ingredients and Reference Books) | 集高通量试验数据和参考挖掘数据于一体的天然药物数据库平台。 | 提供中药材、中药材有效成分、靶基因、疾病、高通量试验数据等。 | ||
化学结构数据库 Chemical structure database | Pubchem | 提供化学信息的开放数据库。 | 收集化学结构、化学和物理特性、生物活性、健康安全和毒性数据等信息。 | |
DrugBank | 结合药物数据与全面的药物靶点信息的数据库。 | 提供关于药品、药品靶点和药物作用的生物或生理结果信息。 | ||
Swiss TargetPrediction | 用于有效预测小分子蛋白质靶标的数据库。 | 可有效预测小分子蛋白质靶标的更新数据和新功能。 | ||
SwissADME | 针对药物分子的预测数据库。 | 评估和预测药物小分子的ADME参数、药代动力学特性、类药性质等。 | ||
疾病数据库 Disease database | GeneCards | 以基因、疾病、通路、化合物为中心的数据库。 | 提供简明的基因组,蛋白质组,转录,遗传和功能上所有已知和预测的人类基因。 | |
DisGeNET | 收集疾病与各种相关基因之间相互作用的数据库。 | 收集了大量与人类疾病相关的基因;整合了公共数据库、动物模型和科学文献的数据等。 | ||
OMIM(Online Mendelian Inheritance in Man) | 研究人类表型和基因型关系的数据库。 | 可了解人类遗传疾病的病因、症状、遗传模式和基因突变等方面的信息。 | ||
PharmGKB(Pharmacogenomics Knowledge Base) | 药物基因组学知识资源库。 | 提供临床指南和药物标签,总结基因-药物-临床关联等。 | ||
TTD(Therapeutic Target Database) | 提供靶向疾病、通路信息以及针对每个靶标的相应药物的信息数据库。 | 提供了有关可能用于治疗人类疾病的蛋白质靶点的详细信息。 | ||
蛋白互作数据库 Protein interaction database | STRING | 用于预测蛋白质-蛋白质相互作用的数据库。 | 提供许多基因和蛋白质注释、功能分析和网络可视化工具和功能。 | |
蛋白分子数据库 Protein molecule database | Uniprot | 收集蛋白质序列和注释数据的综合资源数据库。 | 为科学界提供全面、高质量且可免费访问的蛋白质序列和功能信息资源。 | |
RCSB PDB(RCSB Protein Data Bank) | 收集生物蛋白质三维结构的数据库。 | 提供对地球上所有生物体中发现的生命分子的3D结构数据。 | ||
功能富集数据库 Function enrichment databases | KEGG(Kyoto Encyclopedia of Genes and Genomes) | 整合了基因组、化学和系统功能信息的数据库。 | 用于从分子水平信息中了解生物系统的高级功能和实用程序。 | |
DAVID(Database for Annotation, Visualization and Integrated Discovery) | 整合生物学数据和分析工具的生物信息数据库。 | 为大规模的基因或蛋白列表提供系统综合的生物功能注释信息。 | ||
Metascape | 基因功能注释分析工具。 | 获得基因注释、基因功能、基因分类、富集的通路以及蛋白质相互作用网络。 |
表 2
网络药理学在复方中(兽)药抗炎作用研究中的应用"
复方中(兽)药名称 Name of Chinese (veterinary) medicine compounds | 《兽药典》(2020版) 中适用的动物 Applicable animals in the Veterinary Pharmacopoeia (2020) | 验证方法 Verification methods | 中草药潜在抗炎活性成分 Potential anti-inflammatory active ingredient in Chinese herbal medicine | 潜在抗炎靶点或通路 Potential anti-inflammatory targets or pathways | 文献Literatures |
郁金散 Yujin powder | 马、牛、羊、猪 | 无 | 槲皮素、β-谷甾醇、豆甾醇、山奈酚 | 肿瘤坏死因子(TNF)、白细胞介素6(IL-6)、IL-10;癌症通路、南美锥虫病和细胞因子-细胞因子受体相互作用通路 | [ |
白龙散 Bailongsan | 马、牛、羊、猪、兔、禽 | 无 | 槲皮素、β-谷甾醇、山奈酚、小檗碱 | TNF、丝裂原活化蛋白激酶14(MAPK14)、血管内皮生长因子A(VEGFA)、IL-16、胱天蛋白酶3(CASP3);IL-17信号通路 | [ |
鱼腥草芩蓝口服液 Yuxingcao Indigo oral liquid | — | 无 | 异热马酮、黄芩黄酮Ⅱ、依靛蓝酮、毛果芸香苷、连翘醇 | 雌激素受体1(ESR1)、热休克蛋白(HSP90AA1)、环加氧酶2(PTGS2)、内皮型一氧化氮合酶(NOS3)、MAPK14;卵母细胞成熟过程、禽神经细胞膜配体-受体信号调节过程、血管内皮生长因子信号调节过程 | [ |
五味甘露 Wuwei Ganlu | — | 分子对接 | 山奈酚、杨梅素、异荭草素、异槲皮苷、黄芪苷 | TNF、IL-6、IL-1β;NOD样受体(NLR)、热蛋白结构域相关蛋白3(NLRP3)信号通路 | [ |
清肺饮 Qingfei decoction | — | 分子对接 | 豆甾醇、槲皮素、木犀草素、薯蓣皂苷 | MAPK8,IKBKB,表皮生长因子(EGFR),哺乳动物雷帕梅素靶蛋白(mTOR);核因子-κB(NF-κB)、MAPK、磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/Akt)信号通路 | [ |
白头翁汤 Pulsatilla decoction | 马、牛、羊、猪、兔、禽 | 分子对接 | 吴茱萸次碱、表小檗碱、β-谷甾醇、甲基黄连碱、金黄色素和白头翁皂苷B4 | 基质金属蛋白酶9(MMP9)、髓过氧化物酶(MPO)、NOS3、过氧化物酶体增生激活受体(PPARG);IL-17、TNF、Toll样受体(TLR) 信号通路 | [ |
鹳榆止泻散 Guanyu Zhixie Powder | — | 分子对接 | 槲皮素、苦参碱、山奈酚、β-谷甾醇、柚皮素、木犀草素、甘草异黄酮 | 原癌基因(FOS)、核内转录因子基因(JUN)、RELA(p65)、ESR1、MAPK1;PI3K/Akt信号通路 | [ |
葛根芩连汤 Gegen Qinlian Decoction | — | 分子对接 | 槲皮素、山奈酚、汉角素、豆甾醇 | MMP3、IL1B、NOS2、血红素加氧酶1 (HMOX1)、PPARG、尿激酶(PLAU);IL-17、AGE-RAGE、TLR、TNF信号通路 | [ |
黄柏、石菖蒲合剂 Phellodendron amurense and Acorus calamus mixture | — | 分子对接、体内试验(小鼠耳廓肿胀试验) | 槲皮素、山奈酚 | IL1B、趋化因子(CCL2)、TNF;TNF、IL-17信号通路 | [ |
荆防合剂 Jingfang mixture | — | 体内试验(小鼠荨麻疹模型) | 槲皮素、山奈酚、β-谷甾醇、异鼠李素 | Akt1、CASP3、IL1B、PTGS2、TNF;TNF、NF-κB、MAPK信号通路 | [ |
天参胶囊 Tianshen capsule | — | 分子对接、体外试验(LPS诱导的RAW264.7细胞炎症模型) | 木犀草素、山奈酚、槲皮素 | 信号转导子与转录激活子3(STAT3)、肿瘤蛋白53(TP53)、JUN、Akt1、酪氨酸蛋白激酶基因(SRC)、MAPK1;PI3K/Akt、MAPK、TLR、JAK2/STAT3信号通路 | [ |
黄柏-王不留行药对 Phellodendri Chinensis Cortex-Vaccariae Semen | — | 分子对接、体内试验(非细菌性前列腺炎大鼠模型) | 槲皮素、吴茱萸次碱 | IL-6、TNF-α、IL-1β、TP53、Akt1;PI3K/Akt、脂质与动脉粥样硬化、前列腺癌、MAPK信号通路 | [ |
二妙散 Er Miao San | — | 体外试验(LPS刺激的RAW264.7细胞炎症模型)、体内试验(角叉菜胶诱导的大鼠足肿胀模型) | 槲皮素、汉黄芩素 | TNF-α、IL-6、IL-1β;TLR,NLR,TCR、MAPK信号通路 | [ |
黄芪桂花五物汤 Huangqi Guizhi Wuwu decoction | — | 分子对接、体内试验(LPS诱导的小鼠炎症模型) | 槲皮素、山奈酚、异鼠李素、β-谷甾醇 | α7烟碱乙酰胆碱受体(α7 nAchR)、IL-6、IL-1β、IL-10、转化生长因子(TGF-β);TGF-β、NF-κB、JAK2/STAT3、TNF信号通路 | [ |
金银花-连翘 Honeysuckle-Forsythia | — | 分子对接、体外试验(奶牛乳腺上皮细胞炎症模型) | β-谷甾醇、山奈酚、木犀草素、槲皮素 | IL-6、IL-1β和IL-8;脂质与动脉粥样硬化、IL-17信号通路 | [ |
乳康颗粒 Rukang Granules | — | 分子对接 | 槲皮素、异鼠李素 | HSPA1A、RELA、ESR1;MAPK和PI3K/Akt信号通路 | [ |
柴芩复方 Chaiqin compound | — | 体外试验(LPS诱导小鼠肠上皮细胞炎症模型) | 槲皮素、山奈酚、异鼠李素 | TNF、Akt1;TNF-α、PI3K/Akt信号通路 | [ |
表 3
网络药理学在单味中(兽)药抗炎作用研究中的应用"
中(兽)药名称 Name of Chinese (veterinary) medicine | 《兽药典》(2020版) 中适用的动物 Applicable animals in the Veterinary Pharmacopoeia (2020) | 验证方法 Verification methods | 中草药潜在抗炎活性成分 Potential anti-inflammatory active ingredient in Chinese herbal medicine | 潜在抗炎靶点或通路 Potential anti-inflammatory targets or pathways | 文献 Literatures |
黄连 Coptidis Rhizoma | 马、牛、驼、羊、猪、兔、禽 | 分子对接 | 槲皮素、黄连素、黄连碱、氧化小檗碱 | CCL2、IL-6、MMP3、IL-8、MAPK1;IL-17、TNF信号通路 | [ |
三七 Otoginseng Radix et Rhizoma | 马、牛、驼、羊、猪、犬、猫 | 无 | 人参皂苷Rh1、人参皂苷Rg1、月桂酸单甘油酯、β-胡萝卜苷、人参环氧炔醇 | EGFR、STAT3、MAPK14、IL-2;癌症、细胞因子受体相互作用通路 | [ |
平贝母 Fritillaria ussuriensis | — | 分子对接 | 贝母甲素、西北母碱、贝母乙素 | CASP3、IL-6、JUN、TNF、IL-1β;TNF、IL-17、NF-κB、MAPK信号通路 | [ |
杜仲 Eucommia ulmoides | 马、牛、羊、猪、犬、猫 | 无 | 槲皮素、山奈酚、β-胡萝卜素、β-谷甾醇 | IL1B、IL-6、TNF、ALB、VEGFA;TNF、IL-17、TCR、NLR、TLR信号通路 | [ |
黄芪 Astragali Radix | 马、牛、驼、羊、猪、兔、禽 | 分子对接 | 黄芪甲苷、山奈酚 | TNF、TLR4、IL-10;脂质与动脉粥样硬化、IL-17、TNF信号通路 | [ |
夏枯草 Prunella vulgaris | 马、牛、羊、猪、兔、禽 | 分子对接、分子动力学模拟试验 | 迷迭香酸苷、紫草酸 | TP53、JUN、CASP3、缺氧诱导因子-1α(HIF-1α);程序性死亡受体1(PD-1)、IL-17、AGE-RAGE信号通路 | [ |
桑叶 Mori Folium | 马、牛、羊、猪、兔、禽 | 分子对接 | 槲皮素、β-谷甾醇、山奈酚 | JUN、IL6、TNF-α、SRC、IFNG;MAPK、C型凝集素受体(CLR)通路、TLR信号通路 | [ |
黄柏 Phellodendron chinense Schneid | — | 体内试验(二甲苯所致的小鼠耳廓肿胀模型) | 小檗碱、槲皮素、β-谷甾醇、异山梨胺 | IL-6、IL-1β、MAPK14;TNF、TLR、NF-κB信号通路、趋化因子信号通路 | [ |
资木瓜 Chaenomeles speciosa | — | 分子对接、体内试验(小鼠诱导性关节炎模型) | 表儿茶素、油酸乙酯、白桦脂酸、槲皮素 | VEGFA、IL-1β、IL-6;IL-17、TNF、TLR、NF-κB信号通路 | [ |
文王一支笔 Balanophora involucrata | — | 分子对接、体外试验(LPS诱导的RAW264.7炎症细胞模型) | 柚皮素、(-)-开环异落叶松脂素 | SRC、HSP90AA1、PIK3CA;癌症、PI3K/ Akt、MAPK信号通路 | [ |
苦豆子 Sophora alopecuroide | — | 体外试验(LPS刺激的RAW264.7细胞炎症模型) | 槐定碱、苦参碱 | IKBKB、NLRP3、MAPK14、MMP2;PI3K/Akt、MAPK、NF-κB、TNF信号通路 | [ |
紫叶李 Prunus cerasifera Ehrhart | — | 体外试验(LPS诱导的RAW264.7细胞炎症模型) | 二氢山奈酚-β-葡糖苷、丁香酸、香草酸 | NOD2、TLR1、TLR9、MMP9、MMP2、EGFR基因;MAPK、TNF、TLR、cAMP信号通路 | [ |
丁香叶 Syringae Folium | 马、牛、羊、猪、犬、猫、兔、禽 | 体内试验(小鼠耳肿胀模型)、体外试验(LPS诱导的小鼠炎症模型) | 木犀草素、槲皮素 | NFKB1、RELA、Akt1、TNF和PIK3CG;MAPK、NF-κB、TCR和TLR信号通路 | [ |
北五味子 Schisandra chinensis | — | 分子对接、体内试验(葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠模型) | 长栲利素A、脱氧三尖杉醋碱、当归酰基戈米辛O | PIK3CA、Akt1;PI3K/Akt信号通路 | [ |
白头翁 Pulsatilla chinensis | 马、牛、驼、羊、猪、犬、猫、兔、禽 | 无 | 异鼠李素 | EGFR、TLR;MAPK,JAK-STAT、PI3K/Akt、NF-κB等信号通路 | [ |
金银花 Lonicerae japonicae flos | 马、牛、羊、猪、犬、猫、兔、禽 | 分子对接 | 木犀草素、槲皮素 | TNF、IL-6、IL-1β、Akt1、PTGS2;JAK/STAT、FoxO、MAPK信号通路 | [ |
表 4
网络药理学在中(兽)药组分抗炎作用研究中的应用"
复方中(兽)药名称 Name of components of Chinese (veterinary) medicine | 《兽药典》(2020版) 中适用的动物 Applicable animals in the Veterinary Pharmacopoeia (2020) | 验证方法 Verification methods | 中草药潜在抗炎活性成分 Potential anti-inflammatory active ingredient in Chinese herbal medicine | 潜在抗炎靶点或通路 Potential anti-inflammatory targets or pathways | 文献 Literatures |
山豆根水提物 Aqueous extract of Sophorae Tonkinensis Radix et Rhizoma | 马、牛、驼、羊、猪、兔、禽 | 分子对接、体内试验(胶原诱导型类风湿性关节炎小鼠模型) | 槲皮素、染料木素、山奈酚、大豆皂苷C、黄豆苷元 | STAT3、TNF、MAPK1、AP-1、IL6;PI3K/Akt、TNF信号通路 | [ |
黄蜀葵总黄酮 Total flavones of Abelmoschus manihot | — | 体外试验(流感病毒PR8诱导MDCK细胞炎症模型)、体内试验(IAV诱导的小鼠肺部炎症模型) | 异槲皮素、槲皮素、槲皮素-3′ -O-葡萄糖苷、杨梅素、芦丁、金丝桃苷 | TNF、IL-10、IL-6、IL-1B、JUN、MAPK1;TNF、MAPK、NF-κB和TLR信号通路 | [ |
荔枝叶醇提物 Alcohol extract of Litchi chinensis Sonn. Leaves | — | 体外试验(脂多糖诱导的RAW264.7巨噬细胞) | 亚油酸甲酯、亚麻酸甲酯、木犀草素、山奈酚、槲皮素 | AKT1、MAPK14、MMP9、PIK3CG;TNF、HIF-1信号通路 | [ |
三七提取物 Panax notoginseng extracts | 马、牛、驼、羊、猪、犬、猫 | 分子对接、体内试验(LPS诱导的肉鸡炎症模型) | 三七皂苷、三七多糖 | STAT3、IL-6、CASP3;CLR、TLR、NLR、MAPK信号通路 | [ |
臭灵丹乙酸乙酯部位 Ethyl acetate fraction of Laggerae Herba | — | 分子对接、体外试验(LPS诱导RAW264.7细胞炎症模型) | 异绿原酸、金腰素乙、臭灵丹酸、冬青酸 | IL-6、TNF-α;PI3K/Akt、IL-17、NF-κB、TNF信号通路 | [ |
葡萄籽多酚 Grape seed polyphenols | — | 分子对接、体外试验(LPS诱导RAW264.7细胞炎症模型) | 儿茶素、表儿茶素、原花青素B2、刺柄芒花素 | PTGS2、MMP9、IL-6、TNF-α | [ |
马齿苋多糖 Portulaca oleracea L. polysaccharide | — | 分子对接、动力学模拟试验、体内试验(DSS诱导的小鼠溃疡性结肠炎模型) | 甘露糖、鼠李糖、葡萄糖醛酸、半乳糖醛酸、葡萄糖、半乳糖、阿拉伯糖 | VEGFA、EGFR、TLR4;MAPK、PI3K/Akt、Ras、TNF和NF-κB信号通路 | [ |
表 5
网络药理学在中(兽)药单体抗炎作用研究中的应用"
中(兽)药单体名称 Name of Chinese (veterinary) medicine monomer | 《兽药典》(2020版) 中适用的动物 Applicable animals in the Veterinary Pharmacopoeia (2020) | 验证方法 Verification methods | 潜在抗炎靶点或通路 Potential anti-inflammatory targets or pathways | 文献 Literatures |
王不留行黄酮苷 Vaccarin | — | 体内试验(LPS诱导的小鼠脓毒症急性肺损伤作模型) | Akt1、TNF、EGFR、HIF-1α、PTGS2;癌症通路、JAK/STAT、PI3K/Akt信号通路 | [ |
苦参碱 Matrine | — | 分子对接 | ALB、TNF、MYC、CASP3、IL-6;TNF、MAPK、NF-κB、IL-17、TLR信号通路 | [ |
黄柏碱 Phellodendrine | — | 体外试验(LPS诱导的RAW264.7巨噬细胞炎症模型) | PTGS1、PTGS2、HTR1A、PIK3CA;cAMP、雌激素、TNF、β-肾上腺素能突触等信号通路 | [ |
小檗碱 Berberine | — | 分子对接、分子模拟试验、体内试验(沙门菌感染肉鸡肠道炎症模型) | HSP90AA1、PIK3CA;PI3K/Akt、cAMP、AMPK等信号通路 | [ |
豆甾醇 Stigmasterol | — | 分子对接、体外试验(LPS诱导的RAW264.7细胞炎症模型) | AChE、F2、PTGS2、MAPK3;雌激素、内分泌抵抗和甲状腺激素信号通路 | [ |
岩大戟内酯B Jolkinolide B | — | 分子对接、体内试验(大鼠胶原诱导性关节炎)、体外试验(LPS诱导的RAW264.7巨噬细胞炎症模型) | JAK2;JAK/STAT信号通路 | [ |
大麻二酚 Cannabidiol | — | 分子对接 | TP53、TNF、转录因子p65、IκB-α、EGFR;TNF、TLR、MAPK、NF-κB信号通路 | [ |
丹参酮Ⅰ和隐丹参酮 Tanshinone Ⅰ and cryptotanshinone | — | 体外试验(LPS诱导的RAW264.7巨噬细胞炎症模型 | JUN、VEGFA、TNF、MAPK8、IL-8、PTGS2;STAT3、AKT1、VEGFA、ESR1、MAPK8;TLR、JAK-STAT和mTOR信号通路 | [ |
1 | 孙志轩, 李苗, 黄婧洁, 等. 非甾体类抗炎药前处理及检测方法研究进展[J]. 中国兽药杂志, 2023, 57 (7): 77- 86. |
SUN Z X , LI M , HUANG J J , et al. Research progress on pretreatment and detection methods of nonsteroidal anti-inflammatory drugs[J]. Chinese Journal of Veterinary Drug, 2023, 57 (7): 77- 86. | |
2 |
HOPKINS A L . Network pharmacology: the next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4 (11): 682- 690.
doi: 10.1038/nchembio.118 |
3 |
TO K I , ZHU Z X , WANG Y N , et al. Integrative network pharmacology and experimental verification to reveal the anti-inflammatory mechanism of ginsenoside Rh4[J]. Front Pharmacol, 2022, 13, 953871.
doi: 10.3389/fphar.2022.953871 |
4 | LI S , ZHANG B . Traditional Chinese medicine network pharmacology: theory, methodology and application[J]. Chin J Nat Med, 2013, 11 (2): 110- 120. |
5 | 王子怡, 王鑫, 张岱岩, 等. 中医药网络药理学: 《指南》引领下的新时代发展[J]. 中国中药杂志, 2022, 47 (1): 7- 17. |
WANG Z Y , WANG X , ZHANG D Y , et al. Traditional Chinese medicine network pharmacology: development in new era under guidance of network pharmacology evaluation method guidance[J]. China Journal of Chinese Materia Medica, 2022, 47 (1): 7- 17. | |
6 |
ZHAO L , ZHANG H , LI N , et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023, 309, 116306.
doi: 10.1016/j.jep.2023.116306 |
7 | 陈汉明, 李桦, 黎增权. 基于网络药理学探讨郁金散治疗猪肠道炎症的作用机制[J]. 中国兽医杂志, 2024, 60 (6): 124- 133. |
CHEN H M , LI Y , LI Z Q , et al. Study on the mechanism of yujin powder in the treatment of porcine intestinal inflammation based on network pharmacology[J]. Chinese Journal of Veterinary Medicine, 2024, 60 (6): 124- 133. | |
8 | 郭翱, 顾进华, 刘自扬, 等. 基于网络药理学分析白龙散治疗仔猪腹泻的机制[J]. 中国兽药杂志, 2023, 57 (11): 40- 46. |
GUO A , GU J H , LIU Z Y , et al. Analyzation of the mechanism of bailongsan in treating piglet diarrhea based on network pharmacology[J]. Chinese Journal of Veterinary Drug, 2023, 57 (11): 40- 46. | |
9 | 宋朋杰, 武小虎, 张世栋, 等. 基于网络药理学探究鱼腥草芩蓝口服液清热抗炎的作用机制[J]. 西北农业学报, 2020, 29 (2): 165- 174. |
SONG P J , WU X H , ZHANG S D , et al. Analysis of antipyretic and anti-inflammatory mechanism of Yuxingcao Indigo oral liquid based on network pharmacology[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29 (2): 165- 174. | |
10 | 蔡维维, 朱雪锐, 张仕杰, 等. 网络药理学结合谱效关系及分子对接探讨五味甘露抗炎物质基础及作用机制[J]. 药物评价研究, 2024, 47 (9): 1944- 1959. |
CAI W W , ZHU X R , ZHANG S J , et al. Molecular mechanism of Tibetan medicine Wuwei Ganlu on anti-inflammatory effect based on network pharmacology combined with spectrum effect relationship and molecular docking[J]. Drug Evaluation Research, 2024, 47 (9): 1944- 1959. | |
11 | WANG Y , YUAN Y , WANG W , et al. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking[J]. Comput Biol Med, 2022, 145, 105454. |
12 | 白珊泽, 姚万玲, 纪鹏, 等. 白头翁汤治疗溃疡性结肠炎"成分-靶标-通路"网络分析及效应机制预测[J]. 动物医学进展, 2022, 43 (6): 69- 78. |
BAI S Z , YAO W L , JI P , et al. Analysis of "component-target-pathway" network and prediction of effect mechanism of Pulsatilla decoction in the treatment of ulcerative colitis[J]. Progress in Veterinary Medicine, 2022, 43 (06): 69- 78. | |
13 | 马挺, 纪鹏, 魏彦明, 等. 鹳榆止泻散防治猪溃疡性结肠炎的潜在作用机制[J]. 西南大学学报(自然科学版), 2024, 46 (11): 67- 80. |
MA T , JI P , WEI Y M , et al. Potential mechanism of Guanyu zhixie powder in control of rorcine ulcerative colitis[J]. Journal of Southwest University (Natural Science Edition), 2024, 46 (11): 67- 80. | |
14 | WEI M , LI H , LI Q , et al. Based on network pharmacology to explore the molecular targets and mechanisms of Gegen Qinlian decoction for the treatment of ulcerative colitis[J]. Biomed Res Int, 2020, 2020, 5217405. |
15 | 梁天, 王明迪, 孙鹏, 等. 黄柏、石菖蒲合剂抗炎作用的网络药理学分析[J]. 中国畜牧兽医, 2023, 50 (3): 1195- 1206. |
LIANG T , WANG M D , SUN P , et al. Network pharmacological analysis of the anti-inflammatory mechanism of traditional Chinese medicine mixture Phellodendron amurense and Acorus calamus[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (3): 1195- 1206. | |
16 | 冯群, 孙成宏, 李市荣, 等. 基于网络药理学和实验验证的荆防合剂有效成分抗炎作用机制研究[J]. 中国中药杂志, 2022, 47 (20): 5481- 5487. |
FENG Q , SUN C H , LI S R , et al. Anti-inflammatory mechanism of active ingredients in Jingfang Mixture based on network pharmacology and experimental verification[J]. China Journal of Chinese Materia Medica, 2022, 47 (20): 5481- 5487. | |
17 | 马进财, 赵陇和, 李睿, 等. 基于网络药理学和细胞实验探究天参胶囊的抗炎机制[J]. 中成药, 2023, 45 (4): 1352- 1358. |
MA J C , ZHAO L H , LI R , et al. Based on network pharmacology and cell experiments, the anti-inflammatory mechanism of Tianshen capsule was explored[J]. Chinese Traditional Patent Medicine, 2023, 45 (4): 1352- 1358. | |
18 | 党静静, 于文涛, 莫小萱, 等. 基于网络药理学探讨黄柏-王不留行药对治疗慢性非细菌性前列腺炎大鼠的作用机制[J]. 天然产物研究与开发, 2025, 37 (3): 544-554, 536. |
DANG J J , YU W T , MO X X , et al. Mechanism of Phellodendri Chinensis Cortex-Vaccariae Semen in the treatment of chronic non-bacterial prostatitis in rats based on network pharmacology[J]. Natural Product Research and Development, 2025, 37 (3): 544-554, 536. | |
19 | GUO B , ZHAO C , ZHANG C , et al. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification[J]. Pharmacol Res, 2022, 175, 106000. |
20 | WANG S , JI T , WANG L , et al. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits LPS-induced inflammation by regulating macrophage polarization based on network pharmacology[J]. BMC Complement Med Ther, 2023, 23 (1): 8. |
21 | 丘富安, 王涛, 王鸥婷, 等. 基于网络药理学探究金银花-连翘治疗奶牛乳房炎的作用机制及体外验证[J]. 黑龙江畜牧兽医, 2024 (3): 102- 110. |
QIU F A , WANG T , WANG O T , et al. Exploring the mechanism of Honeysuckle-Forsythia in the treatment of dairy cow mastitis and in vitro validation based on network pharmacology[J]. Heilongjiang Animal Science and Veterinary Medicine, 2024 (3): 102- 110. | |
22 | 樊艺萌, 魏媛媛, 王惠茹, 等. 基于网络药理学与分子对接探究中兽药复方乳康颗粒治疗奶牛乳房炎的作用机制[J]. 中国畜牧兽医, 2023, 50 (6): 2507- 2517. |
FEN Y M , WEI Y Y , WANG H R , et al. Potential mechanisms of Chinese veterinary medicine compound Rukang Granules in the treatment of dairy cow mastitis based on network pharmacology and molecular docking technology[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (6): 2507- 2517. | |
23 | 武慧宁, 郭梦如, 张进, 等. 柴芩复方抗小鼠肠炎作用机制的网络药理学分析及体外验证研究[J]. 黑龙江畜牧兽医, 2024 (21): 107- 113. |
WU H N , GUO M R , ZHANG J , et al. Network pharmacological analysis of the mechanism of action of Chaiqin compound Network pharmacological analysis of the mechanism of action of Chaiqin compound[J]. Heilongjiang Animal Science and Veterinary Medicine, 2024 (21): 107- 113. | |
24 | 李梦园, 郭金玲, 姚静雯, 等. 基于网络药理学及分子对接探究黄连治疗关节炎的作用机制[J]. 中国新药杂志, 2024, 33 (16): 1699- 1707. |
LI M Y , GUO J L , YAO J W , et al. Study on mechanism of Coptidis Rhizoma in the treatment of arthritis based on network pharmacology and molecular docking[J]. Chinese Journal of New Drugs, 2024, 33 (16): 1699- 1707. | |
25 | 庞会婷, 罗朵生, 郭姣. 三七化学成分分析及其抗炎机制的网络药理学探讨[J]. 中草药, 2020, 51 (21): 5538- 5547. |
PANG H T , LUO D S , GUO J . Study on chemical constituents of Notoginseng Radix et Rhizoma and network pharmacology of its anti-inflammatory mechanism[J]. Chinese Traditional and Herbal Drugs, 2020, 51 (21): 5538- 5547. | |
26 | 金鑫, 吕经纬, 边学峰, 等. 基于网络药理学和分子对接研究平贝母中生物碱的抗炎作用[J]. 中成药, 2022, 44 (2): 647- 652. |
JIN X , LV J W , BIAN X F , et al. Anti-inflammatory mechanism of Fritillaria ussuriensis alkaloid based on network pharmacology and molecular docking[J]. Chinese Traditional Patent Medicine, 2022, 44 (2): 647- 652. | |
27 | YING Y , TANG Z , NIU F , et al. Network pharmacology-based pharmacological mechanism prediction on Eucommia ulmoides against rheumatoid arthritis[J]. Medicine (Baltimore), 2022, 101 (29): e29658. |
28 | REN J , DING Y , LI S , et al. Predicting the anti-inflammatory mechanism of Radix Astragali using network pharmacology and molecular docking[J]. Medicine (Baltimore), 2023, 102 (35): e34945. |
29 | 谭知浩, 肖志葵, 罗弘杉, 等. 基于UPLC-Q-TOF-MS/MS与网络药理学探讨夏枯草茎叶抗炎有效成分及其作用机制[J]. 现代药物与临床, 2023, 38 (4): 795- 804. |
TAN Z H , XIAO Z K , LUO H S , et al. Effective components of Prunella vulgaris stem and leaf and their anti-inflammatory mechanism based on UPLC-Q-TOF-MS/MS and network pharmacology[J]. Drugs & Clinic, 2023, 38 (4): 795- 804. | |
30 | 武建文, 范秋雨, 李焕荣, 等. 基于网络药理与分子对接研究桑叶活性成分抗炎的作用机制[J]. 中国畜牧杂志, 2023, 59 (6): 298- 306. |
WU J W , FAN Q Y , LI H R , et al. Study on anti-inflammatory mechanism of Mori Folium active ingredients based on network pharmacology and molecular docking[J]. Chinese Journal of Animal Science, 2023, 59 (6): 298- 306. | |
31 | 刘静茹, 姚姗姗, 王文静, 等. 中药黄柏抗炎作用机制的网络药理学分析[J]. 黑龙江畜牧兽医, 2020 (20): 117- 121. |
LIU J R , YAO S S , WANG W J , et al. Network pharmacology analysis of anti-inflammatory mechanism of Phellodendron chinense Schneid[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020 (20): 117- 121. | |
32 | 段志豪, 金璨, 邓颖, 等. 基于网络药理学与实验验证探讨资木瓜治疗类风湿关节炎的作用机制[J]. 中国中药杂志, 2023, 48 (18): 4852- 4863. |
DUAN Z H , JIN C , DENG Y , et al. Mechanism of Chaenomelis Fructus in treatment of rheumatoid arthritis based on network pharmacology and experimental verification[J]. China Journal of Chinese Materia Medica, 2023, 48 (18): 4852- 4863. | |
33 | 张钰, 涂星, 张燕, 等. 文王一支笔的抗炎作用机制: 基于网络药理学、分子对接及实验验证[J]. 南方医科大学学报, 2023, 43 (3): 383- 392. |
ZHANG Y , TU X , ZHANG Y , et al. Anti-inflammatory mechanism of Balanophora involucrata: a network pharmacology and molecular docking-based analysis and verification in lipopolysaccharide-induced RAW264.7 cells[J]. Journal of Southern Medical University, 2023, 43 (3): 383- 392. | |
34 | 范秋雨, 武建文, 李春晓, 等. 苦豆子抗炎机制的网络药理学分析及试验验证[J]. 中国畜牧兽医, 2023, 50 (7): 2951- 2965. |
FAN Q Y , WU J W , LI C X , et al. Network pharmacology analysis of anti-inflammatory mechanism of Sophora alopecuroides and experimental validation[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (7): 2951- 2965. | |
35 | DUAN X , LI J , CUI J , et al. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart[J]. J Food Biochem, 2022, 46 (12): e14396. |
36 | WANG Y , ZHOU Z , HAN M , et al. The anti-inflammatory components from the effective fraction of Syringae Folium (ESF) and its mechanism investigation based on network pharmacology[J]. Bioorg Chem, 2020, 99, 103764. |
37 | 刘雪松, 张艳, 薛沾枚, 等. 基于网络药理学和动物试验探究北五味子靶向PI3K/Akt信号通路发挥抗炎作用的机制[J]. 东北农业大学学报, 2023, 54 (11): 74- 84. |
LIU X S , ZHANG Y , XUE Z M , et al. Study on anti-inflammatory mechanism of Schisandra chinensis targeting PI3K/Akt signaling pathway based on network pharmacology and animal experiment[J]. Journal of Northeast Agricultural University, 2023, 54 (11): 74- 84. | |
38 | 李雄婕, 严作廷, 曹随忠. 基于网络药理学分析白头翁治疗奶牛乳腺炎的作用机制[J]. 中兽医医药杂志, 2023, 42 (5): 51- 56. |
LI X J , YAN Z T , CAO S Z , et al. Analysis on the mechanism of Pulsatilla chinensis in treating dairy cow mastitis based on network pharmacology[J]. Journal of Traditional Chinese Veterinary Medicine, 2023, 42 (5): 51- 56. | |
39 | 杨嘉睿, 高家瑞, 赵梓轩, 等. 基于网络药理学和分子对接分析金银花在奶牛生产中的抗炎作用及机制[J]. 动物营养学报, 2023, 35 (5): 3104- 3118. |
YANG J R , GAO J R , ZHAO Z X , et al. Anti-Inflammatory effect and mechanism of Lonicerae japonicae flos in dairy cow production based on network pharmacology and molecular docking[J]. Chinese Journal of Animal Nutrition, 2023, 35 (5): 3104- 3118. | |
40 | 祝盼盼, 戚明珠, 杨京航, 等. 基于网络药理学和实验验证探讨山豆根治疗类风湿性关节炎的作用机制[J]. 中国中药杂志, 2022, 47 (19): 5327- 5335. |
ZHU P P , QI M Z , YANG J H , et al. Anti-rheumatoid arthritis mechanism of Sophorae Tonkinesis Radix et Rhizoma based on network pharmacology and experimental verification[J]. China Journal of Chinese Materia Medica, 2022, 47 (19): 5327- 5335. | |
41 | GAO Y , LIANG Z , LV N , et al. Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology[J]. BMC Complement Med Ther, 2022, 22 (1): 36. |
42 | 祁金丽, 梁洁, 黄冬芳, 等. 基于网络药理学研究荔枝叶的抗炎机制及实验验证[J]. 世界中医药, 2023, 18 (8): 1064- 1071. |
QI J L , LIANG J , HUANG D F , et al. Study on anti-inflammatory mechanism and experimental verification of leaves of Litchi chinensis Sonn. based on network pharmacology[J]. World Chinese Medicine, 2023, 18 (8): 1064- 1071. | |
43 | 杜林, 杨萍瑞, 周翰林, 等. 三七提取物通过IL-6、CASP3和STAT3调节免疫应激肉鸡炎症反应[J]. 中国兽医学报, 2024, 44 (8): 1755- 1764. |
DU L , YANG P R , ZHOU H L , et al. Panax notoginseng extracts regulate inflammatory response of immune-stressed broilers through IL-6, CSAP3 and STAT3[J]. Chinese Journal of Veterinary Science, 2024, 44 (8): 1755- 1764. | |
44 | 周永芝, 舒腾云, 宋玉莹, 等. 基于网络药理学探讨臭灵丹抗炎的作用机制[J]. 天然产物研究与开发, 2024, 36 (8): 1420- 1431. |
ZHOU Y Z , SHU T Y , SONG Y Y , et al. Anti-inflammatory mechanism of Laggerae Herba based on network pharmacology[J]. Natural Product Research and Development, 2024, 36 (8): 1420- 1431. | |
45 | 王政, 宋祖晨, 余蕊宏, 等. 基于数据库挖掘、网络药理学和试验验证探究葡萄籽多酚缓解溃疡性结肠炎的作用机制[J]. 畜牧与兽医, 2024, 56 (6): 78- 85. |
WANG Z , SONG Z C , YU R H , et al. The mechanism of grape seed polyphenols in alleviating ulcerative colitis based on database mining, network pharmacology and experimental validation[J]. Animal Husbandry & Veterinary Medicine, 2024, 56 (6): 78- 85. | |
46 | 刘闯, 吴现华, 刘静, 等. 植物多糖抗炎活性机制及其构效关系研究进展[J]. 食品工业科技, 2022, 43 (11): 415- 425. |
LIU C , WU X H , LIU J , et al. Research progress on anti-inflammatory activity mechanism and structure-activity relationship of plant polysaccharides[J]. Science and Technology of Food Industry, 2022, 43 (11): 415- 425. | |
47 | YANG Y , ZHOU X , JIA G , et al. Network pharmacology based research into the effect and potential mechanism of Portulaca oleracea L. polysaccharide against ulcerative colitis[J]. Comput Biol Med, 2023, 161, 106999. |
48 | 蔡维维, 张仕杰, 文媛嫄, 等. 王不留行黄酮苷对脓毒症小鼠急性肺损伤保护作用及机制研究[J]. 药物评价研究, 2024, 47 (7): 1583- 1594. |
CAI W W , ZHANG S J , WEN Y Y , et al. Protective effect and mechanism of vaccarin on acute lung injury in sepsis mice[J]. Drug Evaluation Research, 2024, 47 (7): 1583- 1594. | |
49 | 赵梓轩, 杨嘉睿, 蒋林树, 等. 基于网络药理学和分子对接探讨苦参碱在奶牛生产中的抗炎作用机制[J]. 动物营养学报, 2022, 34 (12): 7872- 7885. |
ZHAO Z X , YANG J R , JIANG L S , et al. Integrating network pharmacology and molecular docking to explorer mechanism of anti-inflammation of Matrine in dairy cow production[J]. Chinese Journal of Animal Nutrition, 2022, 34 (12): 7872- 7885. | |
50 | HU L , WANG J , WU N , et al. Utilizing network pharmacology and experimental validation to investigate the underlying mechanism of phellodendrine on inflammation[J]. PeerJ, 2022, 10, e13852. |
51 |
张旭梅, 魏玉荣, 许丞惠, 等. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54 (8): 3557- 3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
ZHANG X M , WEI Y R , XU C H , et al. To analyze the mechanism of Berberine in the treatment of Salmonella Gallinarum infection based on network pharmacology and experimental verification[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3557- 3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
|
52 | 吴力超, 李俊峰, 张婷婷, 等. 基于网络药理学和细胞实验探讨豆甾醇抗炎作用[J]. 中成药, 2022, 44 (2): 609- 615. |
WU L C , LI J F , ZHANG T T , et al. Anti-inflammatory effect of stigmasterol was investigated based on network pharmacology and cell experiments[J]. Chinese Traditional Patent Medicine, 2022, 44 (2): 609- 615. | |
53 | YAN Y , ZHANG L B , MA R , et al. Jolkinolide B ameliorates rheumatoid arthritis by regulating the JAK2/STAT3 signaling pathway[J]. Phytomedicine, 2024, 124, 155311. |
54 | MA H , XU F , LIU C , et al. A network pharmacology approach to identify potential molecular targets for Cannabidiol's anti-inflammatory activity[J]. Cannabis Cannabinoid Res, 2021, 6 (4): 288- 299. |
55 | CUI S , CHEN S , WU Q , et al. A network pharmacology approach to investigate the anti-inflammatory mechanism of effective ingredients from Salvia miltiorrhiza[J]. Int Immunopharmacol, 2020, 81, 106040. |
56 | JIANG W , LI M , PENG S , et al. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways[J]. Immunol Res, 2023, 71 (6): 800- 813. |
57 | LUO Z , XU Y , QIU L , et al. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover (Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell[J]. Front Vet Sci, 2023, 10, 1279178. |
58 | REN C Z , HU W Y , SONG M L , et al. An ethyl acetate fraction of flavonoids from Polygonum hydropiper L. exhibits an anti-inflammatory activity in PCV2-infected porcine alveolar macrophages via PI3K/Akt and NF-κB pathways[J]. Vet Res Forum, 2022, 13 (3): 339- 347. |
59 | HU Q P , YAN H X , PENG F , et al. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats[J]. Eur J Pharmacol, 2021, 912, 174620. |
[1] | 陈泽晗, 张偌益, 林惠莹, 曾春丽, 林福, 李健. 基于HPLC指纹图谱和网络药理学的白屈菜缓解IPEC-J2细胞炎性损伤作用研究[J]. 畜牧兽医学报, 2025, 56(5): 2466-2480. |
[2] | 贾宏霞, 刘在霞, 周乐, 鲍艳春, 霍晨曦, 左鹏鹏, 谷明娟, 娜日苏, 张文广. 基因组选择在肉牛中的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3757-3768. |
[3] | 文安林, 杨芸芸, 罗永荣, 杨颖, 程振涛, 欧德渊, 文明. 黄连防治鸭病毒性肠炎机制的网络药理学分析及动物试验验证[J]. 畜牧兽医学报, 2024, 55(7): 3225-3233. |
[4] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[5] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[6] | 巩志国, 赵佳敏, 顾柏臣, 任佩佩, 于琢雅, 白云洁, 刘鑫煜, 王超, 刘博. 基于网络药理学分析党参减轻大肠杆菌感染小鼠急性肺损伤的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3571-3581. |
[7] | 张旭梅, 魏玉荣, 许丞惠, 杨彤, 史慧君, 付强, 杨莉. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3557-3570. |
[8] | 杨子辉, 董朕, 伍蕙岚, 谭斌, 曾建国. 基于网络药理学分析蒲公英抗氧化功能的物质基础与作用机制[J]. 畜牧兽医学报, 2023, 54(5): 2170-2185. |
[9] | 潘婵媛, 赵梓轩, 段铭洁, 蒋林树, 童津津. 基于网络药理学预测青蒿缓解奶牛氧化应激的作用机制[J]. 畜牧兽医学报, 2023, 54(3): 1071-1084. |
[10] | 崔恩慧, 薛玉环, 李辞霞, 王帅, 朱晓岩, 柴学军, 赵善廷. 杜仲叶免疫调节机制的网络药理学分析及验证[J]. 畜牧兽医学报, 2023, 54(1): 403-413. |
[11] | 田薇, 李秀梅, 杨娟, 王小莹, 周炜炜, 李中媛, 戴小枫. 基于网络药理学研究板蓝根抑菌活性成分及其作用机制[J]. 畜牧兽医学报, 2022, 53(8): 2782-2793. |
[12] | 刘魏魏, 张宇欣, 李秀梅, 王秀敏, 周炜炜, 戴小枫. 基于网络药理学分析桑叶增强鸡抗氧化功能的作用机制[J]. 畜牧兽医学报, 2022, 53(6): 1958-1970. |
[13] | 刘贺娟, 史晨曦, 王静, 王美乐, 王栋涵, 魏战勇, 尹素改. 基于网络药理学探讨黄芩素对猪丁型冠状病毒感染的潜在作用机制[J]. 畜牧兽医学报, 2022, 53(11): 4097-4109. |
[14] | 王乐, 陈泓岑, 张永红, 吴琼, 侯佳佳, 王天祎, 卢天航, 黄传发, 张华, 崔德凤. 基于网络药理学联合16S rDNA高通量测序技术分析丹参对感染大肠杆菌小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2022, 53(10): 3695-3711. |
[15] | 郝江花, 孙娜, 孙盼盼, 孙耀贵, 范阔海, 尹伟, 李宏全. 基于网络药理学和分子对接分析苦参碱抗PRRSV的作用机制[J]. 畜牧兽医学报, 2021, 52(3): 809-819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||