畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3658-3665.doi: 10.11843/j.issn.0366-6964.2025.08.010
田宛鑫1(), 刘思佳2, 姜宁1, 赵芳芳1, 宋军1, 张爱忠1,*(
)
收稿日期:
2024-08-19
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
张爱忠
E-mail:1633087628@qq.com;aizhzhang@sina.com
作者简介:
田宛鑫(1999-),女,辽宁调兵山人,硕士生,主要从事动物营养与饲料科学研究,E-mail:1633087628@qq.com
基金资助:
TIAN Wanxin1(), LIU Sijia2, JIANG Ning1, ZHAO Fangfang1, SONG Jun1, ZHANG Aizhong1,*(
)
Received:
2024-08-19
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHANG Aizhong
E-mail:1633087628@qq.com;aizhzhang@sina.com
摘要:
细胞穿透肽(CPP)是一类由5~30个天然或人造氨基酸残基组成的短肽序列,具有增强细胞摄取抗原并促进穿越各种生物屏障的能力,因其高效、独特的跨膜运输能力成为近年来生物医药领域的研究热点。噬菌体展示技术(PDT)是一种通过对噬菌体DNA进行基因改造,从而在噬菌体表面展示的分子技术,其包含的遗传序列可将表型与基因型相连,该技术允许不同的肽库在噬菌体颗粒表面表达,并能选择与靶标特异性结合的多肽,且其具有简单、高效和低成本等优点。因此,可利用其在不损伤其他正常细胞的情况下实现靶向治疗,为研发靶向递药新型载体,实现靶向药物投递奠定了基础。本文综述了细胞穿透肽以及利用噬菌体展示技术筛选细胞穿透肽的研究进展,同时也为饲用抗生素替代品的研究与开发提供更有效的思路和方法,并进一步为胞内致病菌的精准杀伤提供新的策略和研究方向。
中图分类号:
田宛鑫, 刘思佳, 姜宁, 赵芳芳, 宋军, 张爱忠. 噬菌体展示技术筛选细胞穿透肽的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3658-3665.
TIAN Wanxin, LIU Sijia, JIANG Ning, ZHAO Fangfang, SONG Jun, ZHANG Aizhong. Research Progress in Screening Cell Penetrating Peptides by Phage Display Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3658-3665.
表 1
CPPs的在生物医药领域中的应用"
应用 Application | 方法 Method | 作用效果 Effect | 参考文献 References |
药物递送 Drug delivery | 将CPPs自身或与肿瘤靶向肽(TTP)共同结合到抗癌药物上 | 可精准递送至肿瘤细胞,提高治疗效果,减少对正常细胞的损伤 | [ |
疫苗开发 Vaccine development | 利用CPPs将抗原蛋白或核酸等生物活性物质导入抗原呈递细胞 | 可增强免疫反应,用于疫苗的开发和免疫治疗 | [ |
基因治疗 Gene therapy | 利用CPPs将基因、小干扰RNA等导入靶细胞 | 可实现基因的修饰和表达调控,用于治疗相关疾病 | [ |
穿越生物屏障 Cross the biological barrier | 利用CPPs能够将药物或基因递送到神经细胞 | CPPs能够穿越血脑屏障、眼屏障等难以逾越的生物屏障,用于治疗创伤性脑损伤等中枢神经系统疾病 | [ |
蛋白质替代疗法 Protein replacement therapy | 利用CPPs将功能性蛋白质如酶、抗体、修饰蛋白等引入细胞内 | 可应用于蛋白质替代疗法、信号通路研究等领域 | [ |
生物传感器开发 Biosensor development | 利用CPPs共轭SERS纳米传感器,用于细胞周期内单个活细胞的原位细胞内pH成像 | 可增强纳米传感器的吸收,开发新型的生物传感器和成像探针 | [ |
表 2
噬菌体展示技术的实际应用"
研究领域 Research field | 实际应用 Practical application | 参考文献 References |
抗体药物开发 Antibody drug development | Xu等[ | [ |
疫苗开发 Vaccine development | 筛选与病毒表面蛋白高度特异的肽或抗体,为开发新的抗病毒药物和疫苗提供重要的候选分子 | [ |
抗癌研究 Anticancer research | 筛选癌特异性抗原肽或抗体并与癌细胞表面特异性标志物结合,实现靶向治疗,减少对正常细胞的损害 | [ |
生物传感器设计 Design of biosensor | 筛选高灵敏度和特异性的传感器,应用于环境监测、食品安全和临床诊断等领域 | [ |
纳米技术领域 Field of nanotechnology | 宋雯妍等[ | [ |
靶向基因或药物递送 Targeted gene or drug delivery | 筛选出能够特异性识别靶细胞或组织的肽或抗体,将基因或药物精准递送至目标部位,提高治疗效果并减少副作用 | [ |
1 | MAK T W , SAUNDERS M E . The immune response: basic and clinical principles[M]. NY, US: Academic Press, 2005. |
2 | 陈杨慧, 黎源, 王蓓. 胞内致病菌入侵宿主细胞分子机理研究进展[J]. 微生物学报, 2023, 63 (8): 2994- 3008. |
CHEN Y H , LI Y , WANG B . Molecular mechanism of intracellular pathogenic bacteria invading host cells[J]. Acta Microbiologica Sinica, 2023, 63 (8): 2994- 3008. | |
3 |
JIANG L Y , WANG P S , SONG X R , et al. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence[J]. Nat Commun, 2021, 12 (1): 879.
doi: 10.1038/s41467-021-21186-4 |
4 |
FENG W L , LI G F , KANG X X , et al. Cascade-targeting poly (amino acid) nanoparticles eliminate intracellular bacteria via on-site antibiotic delivery[J]. Adv Mater, 2022, 34 (12): e2109789.
doi: 10.1002/adma.202109789 |
5 |
BROWNE K , CHAKRABORTY S , CHEN R , et al. A new era of antibiotics: the clinical potential of antimicrobial peptides[J]. Int J Mol Sci, 2020, 21 (19): 7047.
doi: 10.3390/ijms21197047 |
6 |
SILVA A R P , GUIMARÃES M S , RABELO J , et al. Recent advances in the design of antimicrobial peptide conjugates[J]. J Mater Chem B, 2022, 10 (19): 3587- 3600.
doi: 10.1039/D1TB02757C |
7 |
PATEL P , BENZLE K , PEI D , et al. Cell-penetrating peptides for sustainable agriculture[J]. Trends Plant Sci, 2024, 29 (10): 1131- 1144.
doi: 10.1016/j.tplants.2024.05.011 |
8 |
KOTADIYA D D , PATEL P , PATEL H D . Cell-penetrating peptides: a powerful tool for targeted drug delivery[J]. Curr Drug Deliv, 2024, 21 (3): 368- 388.
doi: 10.2174/1567201820666230407092924 |
9 | 谢洋洋, 王邵娟, 袁权, 等. 细胞穿膜肽研究应用的新进展[J]. 生物工程学报, 2019, 35 (7): 1162- 1173. |
XIE Y Y , WANG S J , YUAN Q , et al. Advances in the research and application of cell penetrating peptides[J]. Chinese Journal of Biotechnology, 2019, 35 (7): 1162- 1173. | |
10 |
HUANG X C , LI G L . Antimicrobial peptides and cell-penetrating peptides: non-antibiotic membrane-targeting strategies against bacterial infections[J]. Infect Drug Resist, 2023, 16, 1203- 1219.
doi: 10.2147/IDR.S396566 |
11 |
DENG X , MAI R Y , ZHANG C Y , et al. Discovery of novel cell-penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment[J]. Eur J Med Chem, 2021, 213, 113050.
doi: 10.1016/j.ejmech.2020.113050 |
12 |
OIKAWA K , ISLAM M M , HORII Y , et al. Screening of a cell-penetrating peptide library in Escherichia coli: relationship between cell penetration efficiency and cytotoxicity[J]. ACS Omega, 2018, 3 (12): 16489- 16499.
doi: 10.1021/acsomega.8b02348 |
13 |
DISSANAYAKE S , DENNY W A , GAMAGE S , et al. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides[J]. J Control Release, 2017, 250, 62- 76.
doi: 10.1016/j.jconrel.2017.02.006 |
14 |
HOTCHKISS R S , MCCONNELL K W , BULLOK K , et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo[J]. J Immunol, 2006, 176 (9): 5471- 5477.
doi: 10.4049/jimmunol.176.9.5471 |
15 |
JOHNSON L N , CASHMAN S M , KUMAR-SINGH R . Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea[J]. Mol Ther, 2008, 16 (1): 107- 114.
doi: 10.1038/sj.mt.6300324 |
16 |
YANAMADALA Y , ROY R , WILLIAMS A A , et al. Intranasal delivery of cell-penetrating therapeutic peptide enhances brain delivery, reduces inflammation, and improves neurologic function in moderate traumatic brain injury[J]. Pharmaceutics, 2024, 16 (6): 774.
doi: 10.3390/pharmaceutics16060774 |
17 |
ZORKO M , JONES S , LANGEL V . Cell-penetrating peptides in protein mimicry and cancer therapeutics[J]. Adv Drug Deliv Rev, 2022, 180, 114044.
doi: 10.1016/j.addr.2021.114044 |
18 |
ZHENG X S , ZONG C , WANG X , et al. Cell-penetrating peptide conjugated SERS nanosensor for in situ intracellular pH imaging of single living cells during cell cycle[J]. Anal Chem, 2019, 91 (13): 8383- 8389.
doi: 10.1021/acs.analchem.9b01191 |
19 | GIMENEZ-DEJOZ J , NUMATA K . Molecular dynamics study of the internalization of cell-penetrating peptides containing unnatural amino acids across membranes[J]. Nanoscale Adv, 2021, 4 (2): 397- 407. |
20 |
OBA M , NAKAJIMA S , MISAO K , et al. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides[J]. Bioorg Med Chem, 2023, 91, 117409.
doi: 10.1016/j.bmc.2023.117409 |
21 |
CHI Q N , JIA S X , YIN H , et al. Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability[J]. Bioorg Chem, 2023, 134, 106451.
doi: 10.1016/j.bioorg.2023.106451 |
22 |
GAUTAM A , SHARMA M , VIR P , et al. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides[J]. Eur J Pharm Biopharm, 2015, 89, 93- 106.
doi: 10.1016/j.ejpb.2014.11.020 |
23 |
DOWAIDAR M . Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways[J]. Mitochondrion, 2024, 78, 101906.
doi: 10.1016/j.mito.2024.101906 |
24 | 曹赞霞, 刘磊, 王吉华. 分子动力学模拟研究穿透肽的跨膜机制及引导新肽设计[J]. 科学通报, 2014, 59 (22): 2160- 2168. |
CAO Z X , LIU L , WANG J H . Molecular mechanism of translocation and design of cell penetrating peptides based on molecular dynamics simulation[J]. Chinese Science Bulletin, 2014, 59 (22): 2160- 2168. | |
25 |
ZAHID M , PHILLIPS B E , ALBERS S M , et al. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice[J]. PLoS One, 2010, 5 (8): e12252.
doi: 10.1371/journal.pone.0012252 |
26 |
SMITH G P . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228 (4705): 1315- 1317.
doi: 10.1126/science.4001944 |
27 |
TAN Y Y , TIAN T , LIU W L , et al. Advance in phage display technology for bioanalysis[J]. Biotechnology J, 2016, 11 (6): 732- 745.
doi: 10.1002/biot.201500458 |
28 |
KRISTENSEN M , BIRCH D , M∅RCK NIELSEN H . Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos[J]. Int J Mol Sci, 2016, 17 (2): 185.
doi: 10.3390/ijms17020185 |
29 |
XU B C , SHAOYONG W K , WANG L , et al. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections[J]. Sci Adv, 2023, 9 (39): eadf8782.
doi: 10.1126/sciadv.adf8782 |
30 |
BUSSEL J B , KUTER D J , GEORGE J N , et al. AMG 531, a thrombopoiesis-stimulating protein, for chronic ITP[J]. N Eng J Med, 2006, 355 (16): 1672- 1681.
doi: 10.1056/NEJMoa054626 |
31 |
CASTEL G , CHTÉOUI M , HEYD B , et al. Phage display of combinatorial peptide libraries: application to antiviral research[J]. Molecules, 2011, 16 (5): 3499- 3518.
doi: 10.3390/molecules16053499 |
32 |
HOUIMEL M , MACH J P , CORTHÉSY-THEULAZ I , et al. New inhibitors of Helicobacter pylori urease holoenzyme selected from phage-displayed peptide libraries[J]. Eur J Biochem, 1999, 262 (3): 774- 780.
doi: 10.1046/j.1432-1327.1999.00430.x |
33 |
YUAN Q , WU Y T , WANG Y Q , et al. Protective efficacy of a peptide derived from a potential adhesin of Pseudomonas aeruginosa against corneal infection[J]. Exp Eye Res, 2016, 143, 39- 48.
doi: 10.1016/j.exer.2015.10.011 |
34 |
XU B C , WANG L , YANG C , et al. Specifically targeted antimicrobial peptides synergize with bacterial-entrapping peptide against systemic MRSA infections[J]. J Adv Res, 2025, 67, 301- 315.
doi: 10.1016/j.jare.2024.01.023 |
35 |
ISLAM M S , FAN J , PAN F . The power of phages: revolutionizing cancer treatment[J]. Front Oncol, 2023, 13, 1290296.
doi: 10.3389/fonc.2023.1290296 |
36 |
YOUNES A , VOSE J M , ZELENETZ A D , et al. A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin's lymphoma[J]. Br J Cancer, 2010, 103 (12): 1783- 1787.
doi: 10.1038/sj.bjc.6605987 |
37 | SCHMELCHER M , LOESSNER M J . Application of bacteriophages for detection of foodborne pathogens[J]. Bacteriophage, 2014, 4 (1): e28137. |
38 |
TAWIL N , SACHER E , MANDEVILLE R , et al. Bacteriophages: Biosensing tools for multi-drug resistant pathogens[J]. Analyst, 2014, 139 (6): 1224- 1236.
doi: 10.1039/c3an01989f |
39 |
PELTOMAA R , BENITO-PENÑA E , BARDERAS R , et al. Phage display in the quest for new selective recognition elements for biosensors[J]. ACS Omega, 2019, 4 (7): 11569- 11580.
doi: 10.1021/acsomega.9b01206 |
40 |
宋雯妍, 张瀚文, 吴澳迪, 等. 猪繁殖与呼吸综合征病毒GP5蛋白纳米抗体的筛选及其对病毒复制的抑制效应[J]. 畜牧兽医学报, 2024, 55 (1): 258- 270.
doi: 10.11843/j.issn.0366-6964.2024.01.024 |
SONG W Y , ZHANG H W , WU A D , et al. Screening of nanobodies against porcine reproductive and respiratory syndrome virus GP5 protein and exploration of their lnhibitory effect on virus replication[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 258- 270.
doi: 10.11843/j.issn.0366-6964.2024.01.024 |
|
41 | 马继福, 阿德力·克坦, 解津刚, 等. 基于噬菌体展示技术筛选抑制素α亚基特异性纳米抗体[J]. 中国畜牧兽医, 2023, 50 (5): 2032- 2043. |
MA J F , ADIL·K , XIE J G , et al. Screening of nanobody specific to inhibin a subunit based on phage display technology[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (5): 2032- 2043. | |
42 |
BEDI D , GILLESPIE J W , PETRENKO JR V A , et al. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins[J]. Mol pharm, 2013, 10 (2): 551- 559.
doi: 10.1021/mp3006006 |
43 |
BAKHSHINEJAD B , KARIMI M , KHALAJ-KONDORI M . Phage display: development of nanocarriers for targeted drug delivery to the brain[J]. Neural Regen Res, 2015, 10 (6): 862- 865.
doi: 10.4103/1673-5374.158330 |
44 |
BEDI D , GILLESPIE J W , PETRENKO V A . Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines[J]. Protein Eng Des Sel, 2014, 27 (7): 235- 243.
doi: 10.1093/protein/gzu020 |
45 |
LEE S M , LEE E J , HONG H Y , et al. Targeting bladder tumor cells in vivo and in the urine with a peptide identified by phage display[J]. Mol Cancer Res, 2007, 5 (1): 11- 19.
doi: 10.1158/1541-7786.MCR-06-0069 |
46 |
YUN S K , YANG S M , KWAK M H , et al. Development and validation of cyclic peptide probe for gastric cancer based on phage display technique[J]. Pept Sci, 2024, 116 (3): e24339.
doi: 10.1002/pep2.24339 |
47 |
PANDYA H , GIBO D M , GARG S , et al. An interleukin 13 receptor α 2-specific peptide homes to human Glioblastoma multiforme xenografts[J]. Neuro Oncol, 2012, 14 (1): 6- 18.
doi: 10.1093/neuonc/nor141 |
48 |
YU C W , FU C Y , HUNG L Y , et al. Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology[J]. Microfluid Nanofluid, 2017, 21, 145.
doi: 10.1007/s10404-017-1983-7 |
49 |
FUKUTA T , ASAI T , KIYOKAWA Y , et al. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells[J]. Int J Pharm, 2017, 524 (1-2): 364- 372.
doi: 10.1016/j.ijpharm.2017.03.059 |
50 |
WANG L D , HU Y , LI W J , et al. Identification of a peptide specifically targeting ovarian cancer by the screening of a phage display peptide library[J]. Oncol Lett, 2016, 11 (6): 4022- 4026.
doi: 10.3892/ol.2016.4549 |
51 | SAHIN D , TAFLAN S O , YARTAS G , et al. Screening and identification of peptides specifically targeted to gastric cancer cells from a phage display peptide library[J]. Asian Pac J Cancer Prev, 2018, 19 (4): 927- 932. |
52 | HAMZEH-MIVEHROUD M , ALIZADEH A A , MORRIS M B , et al. Phage display as a technology delivering on the promise of peptide drug discovery[J]. Drug Discov Today, 2013, 18 (23-24): 1144- 1157. |
53 | ZHANG K R , TANG Y Z , CHEN Q , et al. The screening of therapeutic peptides for anti-inflammation through phage display technology[J]. Int J Mol Sci, 2022, 23 (15): 8554. |
54 | KIM J M , SHE C H , POTEZ M , et al. Phage display targeting identifies EYA1 as a regulator of glioblastoma stem cell maintenance and proliferation[J]. Stem Cells, 2021, 39 (7): 853- 865. |
55 | JIRWANKAR Y , NAIR A , MARATHE S , et al. Phage display identified novel Leydig cell homing peptides for testicular targeting[J]. ACS Pharmacol Transl Sci, 2024, 7 (3): 809- 822. |
56 | WADA A , TERASHIMA T , KAGEYAMA S , et al. Efficient prostate cancer therapy with tissue-specific homing peptides identified by advanced phage display technology[J]. Mol Ther Oncolytics, 2019, 12, 138- 146. |
57 | YANG X , LI Y J , ZHU Z Z , et al. Identification of a peptide that crosses the blood-cerebrospinal fluid barrier by phage display technology[J]. Amino Acids, 2021, 53 (8): 1181- 1186. |
58 | WANG T , TAN P , TANG Q , et al. Phage-displayed heptapeptide sequence conjugation significantly improves the specific targeting ability of antimicrobial peptides against Staphylococcus aureus[J]. mLife, 2024, 3 (2): 251- 268. |
59 | TAN P , LAI Z H , ZHU Y J , et al. Multiple strategy optimization of specifically targeted antimicrobial peptide based on structure-activity relationships to enhance bactericidal efficiency[J]. ACS Biomater Sci Eng, 2020, 6 (1): 398- 414. |
60 | 刘思佳, 徐晓东, 姜宁, 等. 噬菌体展示技术筛选羊小肠上皮细胞穿透肽[J]. 动物营养学报, 2023, 35 (9): 6033- 6041. |
LIU S J , XU X D , JIANG N , et al. Screening of sheep small intestinal epithelial cells penetrating peptide by phage display technique[J]. Chinese Journal of Animal Nutrition, 2023, 35 (9): 6033- 6041. | |
61 | 刘思佳, 徐晓东, 姜宁, 等. 噬菌体展示技术筛选猪小肠上皮细胞穿透肽[J]. 中国畜牧杂志, 2023, 59 (8): 351- 356. |
LIU S J , XU X D , JIANG N , et al. Screening of porcine small intestinal epithelial cells penetrating peptide by phage display technique[J]. Chinese Journal of Animal Science, 2023, 59 (8): 351- 356. |
[1] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[2] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[3] | 李聪, 刘书琴, 高峰, 苏江天, 王朝飞, 拓少华, 孙玉江, 党瑞华. 家驴40K液相芯片开发及其初步应用[J]. 畜牧兽医学报, 2024, 55(12): 5538-5548. |
[4] | 宋雯妍, 张瀚文, 吴澳迪, 张丽燕, 刘照, 叶桐桐, 陈创夫, 盛金良. 猪繁殖与呼吸综合征病毒GP5蛋白纳米抗体的筛选及其对病毒复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(1): 258-270. |
[5] | 孙栋, 屈莎, 李璇, 唐善虎, 李思宁, 郝刚. 抗菌肽Tachyplesin Ⅰ及衍生物对大肠杆菌细胞膜作用机制的对比研究[J]. 畜牧兽医学报, 2022, 53(9): 3180-3189. |
[6] | 邵长轩, 党安凯, 战昭含, 来振衡, 朱永杰, 单安山. β-折叠抗菌肽的研发及应用策略[J]. 畜牧兽医学报, 2022, 53(8): 2490-2501. |
[7] | 孙娜, 曹志刚, 张华, 王弘, 孙盼盼, 孙耀贵, 范阔海, 尹伟, 李宏全. 苦参碱对昆明小鼠粪便及血浆代谢物的影响[J]. 畜牧兽医学报, 2022, 53(7): 2364-2379. |
[8] | 孙栋, 蔡寅川, 蒋思雨, 李璇, 郝刚. 抗菌肽Tachyplesin Ⅰ的分子设计、结构与活性分析[J]. 畜牧兽医学报, 2022, 53(6): 1905-1913. |
[9] | 李会, 熊静, 梅翠, 王士源, 周洋, 李晓芬, 付贵花, 张阳, 程鹏, 何玉张, 陈红伟. 抗菌肽CRAMP的安全性、稳定性及其在清除铜绿假单胞菌生物被膜中的作用[J]. 畜牧兽医学报, 2022, 53(5): 1576-1586. |
[10] | 刘水兵, 方文杰, 李言凯, 张文韬, 刘三凤, 陈彪. 基于血浆非靶代谢组学探究急性笼养应激对蛋鸭代谢的影响[J]. 畜牧兽医学报, 2022, 53(12): 4271-4282. |
[11] | 任曼, 刘欣, 唐玉林, 张瑞雪, 秦俊杰, 朱浩, 郭延生. 归芪益母复方制剂对产后奶牛瘤胃微生物和短链脂肪酸的调节[J]. 畜牧兽医学报, 2022, 53(12): 4461-4469. |
[12] | 王天宇, 李志伟, 杨婷, 董林芳, 马志倩, 边巴次仁, 肖书奇, 李爽. 猪流行性腹泻病毒S蛋白纳米抗体的筛选与鉴定[J]. 畜牧兽医学报, 2021, 52(9): 2589-2598. |
[13] | 李霞, 李志, 曹天行, 殷宏, 罗建勋, 关贵全, 刘军龙, 赵洪喜. 基于靶向代谢组学研究环形泰勒虫对宿主细胞能量代谢的影响[J]. 畜牧兽医学报, 2021, 52(12): 3535-3545. |
[14] | 李丘轲, 李金泽, 吴华, 丑淑丽, 单安山. 靶向抗菌肽的设计策略与应用[J]. 畜牧兽医学报, 2020, 51(2): 243-251. |
[15] | 吴海波, 边雪娇, 贾丽玲, 索伦. 二代靶向测序在CRISPR/Cas9靶区筛选中的应用性研究[J]. 畜牧兽医学报, 2019, 50(8): 1587-1595. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||