[1] SHORT K R, KROEZE E J B V, FOUCHIER R A M, et al. Pathogenesis of influenza-induced acute respiratory distress syndrome[J]. Lancet Infect Dis, 2014, 14(1):57-69. [2] WASIK B R, VOORHEES I E H, PARRISH C R. Canine and feline influenza[J]. Cold Spring Harb Perspect Med, 2021, 11(1):a038562. [3] SUN Y P, LIU J H. H9N2 influenza virus in China:a cause of concern[J]. Protein Cell, 2015, 6(1):18-25. [4] LEE D H, CRIADO M F, SWAYNE D E. Pathobiological origins and evolutionary history of highly pathogenic avian influenza viruses[J]. Cold Spring Harb Perspect Med, 2021, 11(2):a038679. [5] ZHANG J H, HUANG L H, LIAO M, et al. H9N2 avian influenza viruses:challenges and the way forward[J]. Lancet Microbe, 2023, 4(2):e70-e71. [6] SAGONG M, LEE K N, LEE E K, et al. Current situation and control strategies of H9N2 avian influenza in South Korea[J]. J Vet Sci, 2023, 24(1):e5. [7] BO-SHUN Z, LI L J, QIAN Z, et al. Co-infection of H9N2 influenza virus and Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink[J]. Vet Microbiol, 2020, 240:108542. [8] 邢燕茹, 范春艳, 罗玉丽, 等. H9N2亚型禽流感病毒流行病学研究进展[J]. 中国家禽, 2021, 43(10):80-86. XING Y R, FAN C Y, LUO Y L, et al. Advance on epidemiology of H9N2 subtype avian influenza virus[J]. China Poultry, 2021, 43(10):80-86. (in Chinese) [9] GU M, XU L J, WANG X Q, et al. Current situation of H9N2 subtype avian influenza in China[J]. Vet Res, 2017, 48(1):49. [10] DHARMAYANTI N L P I, INDRIANI R, NURJANAH D. Vaccine efficacy on the novel reassortant H9N2 virus in indonesia[J]. Vaccines (Basel), 2020, 8(3):449. [11] JIANG Z M, WEI F H, ZHANG Y Y, et al. IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection[J]. Nat Microbiol, 2021, 6(7):932-945. [12] OUYANG W, CEN M Y, YANG L P, et al. NMI facilitates influenza A virus infection by promoting degradation of IRF7 through TRIM21[J]. Am J Respir Cell Mol Biol, 2021, 65(1):30-40. [13] GÜNL F, KRISCHUNS T, SCHREIBER J A, et al. The ubiquitination landscape of the influenza A virus polymerase[J]. Nat Commun, 2023, 14(1):787. [14] COCKRAM P E, KIST M, PRAKASH S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer[J]. Cell Death Differ, 2021, 28(2):591-605. [15] 吴玉湖, 胡欣妍, 杨宣叶, 等. 蛋白质泛素化修饰对流感病毒增殖和致病性的影响[J]. 病毒学报, 2023, 39(4):1152-1160. WU Y H, HU X Y, YANG X Y, et al. Effects of ubiquitination on replication and pathogenesis of influenza virus[J]. Chinese Journal of Virology, 2023, 39(4):1152-1160. (in Chinese) [16] KAMEDA H, MIYOSHI H, SHIMIZU C, et al. Expression and regulation of neuromedin B in pituitary corticotrophs of male melanocortin 2 receptor-deficient mice[J]. Endocrinology, 2014, 155(7):2492-2499. [17] YANG G H, HUANG H P, TANG M Y, et al. Role of neuromedin B and its receptor in the innate immune responses against influenza A virus infection in vitro and in vivo[J]. Vet Res, 2019, 50(1):80. [18] KORDYUKOVA L V, SHTYKOVA E V, BARATOVA L A, et al. Matrix proteins of enveloped viruses:a case study of Influenza A virus M1 protein[J]. J Biomol Struct Dyn, 2019, 37(3):671-690. [19] DAHMANI I, LUDWIG K, CHIANTIA S. Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization[J]. Biosci Rep, 2019, 39(8):BSR20191024. [20] WANG S S, ZHAO Z D, BI Y H, et al. Tyrosine 132 phosphorylation of influenza A virus M1 protein is crucial for virus replication by controlling the nuclear import of M1[J]. J Virol, 2013, 87(11):6182-6191. [21] BARMAN S, ALI A, HUI E K W, et al. Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses[J]. Virus Res, 2001, 77(1):61-69. [22] GÓMEZ-PUERTAS P, ALBO C, PÉREZ-PASTRANA E, et al. Influenza virus matrix protein is the major driving force in virus budding[J]. J Virol, 2000, 74(24):11538-11547. [23] NAYAK D P, BALOGUN R A, YAMADA H, et al. Influenza virus morphogenesis and budding[J]. Virus Res, 2009, 143(2):147-161. [24] BOULO S, AKARSU H, RUIGROK R W H, et al. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes[J]. Virus Res, 2007, 124(1-2):12-21. [25] BUI M, WILLS E G, HELENIUS A, et al. Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins[J]. J Virol, 2000, 74(4):1781-1786. [26] YAMAUCHI Y. Influenza A virus uncoating[J]. Adv Virus Res, 2020, 106:1-38. [27] HOM N, GENTLES L, BLOOM J D, et al. Deep mutational scan of the highly conserved influenza A virus M1 matrix protein reveals substantial intrinsic mutational tolerance[J]. J Virol, 2019, 93(13):e00161-19. [28] 唐梦瑶, 马逸杰, 田世茂, 等. 神经介素B及其受体NMBR参与抗A型流感病毒H1N1亚型感染的信号通路[J]. 畜牧兽医学报, 2021, 52(11):3215-3223. TANG M Y, MA Y J, TIAN S M, et al. The signaling pathway of neuromedin B and its receptor NMBR involvement in anti-influenza A virus H1N1 subtype infection[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11):3215-3223. (in Chinese) [29] MAHESUTIHAN M, ZHENG W N, CUI L, et al. CypA regulates AIP4-mediated M1 ubiquitination of influenza A virus[J]. Virol Sin, 2018, 33(5):440-448. [30] CERVIA L D, SHIBUE T, BORAH A A, et al. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas[J]. Cancer Discov, 2023, 13(3):766-795. [31] LI J Y, ZHU K, GU A H, et al. Feedback regulation of ubiquitination and phase separation of HECT E3 ligases[J]. Proc Natl Acad Sci U S A, 2023, 120(33):e2302478120. [32] KIRUI J, MONDAL A, MEHLE A. Ubiquitination upregulates influenza virus polymerase function[J]. J Virol, 2016, 90(23):10906-10914. |