畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 232-245.doi: 10.11843/j.issn.0366-6964.2025.01.022
鲁秀1(), 张名爱1,2, 孔敏1,2, 张晶3, 王秉翰4, 侯中一1, 滕兴怡1, 姜雅静1, 凡文磊1,2,*(
), 王宝维1,2,*(
)
收稿日期:
2024-07-22
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
凡文磊,王宝维
E-mail:luxiu911@163.com;fanwenlei@qau.edu.cn;wangbw1959@qq.com
作者简介:
鲁秀(1997-),女,山东新泰人,硕士生,主要从事动物遗传与育种研究,E-mail: luxiu911@163.com
基金资助:
LU Xiu1(), ZHANG Ming'ai1,2, KONG Min1,2, ZHANG Jing3, WANG Binghan4, HOU Zhongyi1, TENG Xingyi1, JIANG Yajing1, FAN Wenlei1,2,*(
), WANG Baowei1,2,*(
)
Received:
2024-07-22
Online:
2025-01-23
Published:
2025-01-18
Contact:
FAN Wenlei, WANG Baowei
E-mail:luxiu911@163.com;fanwenlei@qau.edu.cn;wangbw1959@qq.com
摘要:
旨在通过转录组和蛋白组联合分析来挖掘五龙鹅产蛋量相关候选基因,为其产蛋性能遗传机制研究提供理论基础。本研究选取200只体重相近的36周龄健康五龙鹅种鹅,记录其36~54周龄产蛋情况。在产蛋后期(54周龄)时,根据产蛋水平,将产蛋量最高的30只鹅定为高产组,产蛋量最低的30只鹅定为低产组,从高产组(H)和低产组(L)鹅中各采集3个卵巢组织,提取RNA和蛋白质,通过转录组测序(RNA-Seq)和4D-DIA蛋白组定量分析筛选差异表达基因(differentially expressed genes,DEGs)和差异表达蛋白(differentially expressed proteins,DEPs)。之后对筛选的差异基因和蛋白进行RT-qPCR验证、功能富集分析和蛋白互作(PPI)网络的构建与分析,筛选鹅产蛋性能相关的候选基因。结果:共鉴定到450个DEGs和333个DEPs,其中,AFAP1、INHA、FNDC1、INHBB在基因和蛋白水平上表达出相同的差异趋势。富集分析显示,DEGs和DEPs显著富集到364个GO条目和75个KEGG通路,涉及生殖结构发育(gland development)、性别分化(sex differentiation)、性激素活性(hormone activity)、TGF-β通路(TGF-β signaling pathway)、卵母细胞减数分裂(oocyte meiosis)、GnRH信号通路(GnRH signaling pathway)、孕激素介导的卵母细胞成熟(progesterone-mediated oocyte maturation)等多个与产蛋相关的通路和关键生物过程。选取9个潜在候选基因,对高产组和低产组(包含转录组测序样品)各8个卵巢组织进行RT-qPCR验证,表达趋势与测序结果一致。基于上述研究结果,本研究最终筛选到6个与五龙鹅产蛋性能密切相关的候选基因(PTTG1、LRP2、TNFSF10、INHA、INHBB、FST),丰富了五龙鹅产蛋性能的相关分子机制。
中图分类号:
鲁秀, 张名爱, 孔敏, 张晶, 王秉翰, 侯中一, 滕兴怡, 姜雅静, 凡文磊, 王宝维. 基于转录组和蛋白质组分析筛选五龙鹅产蛋相关候选基因[J]. 畜牧兽医学报, 2025, 56(1): 232-245.
LU Xiu, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, HOU Zhongyi, TENG Xingyi, JIANG Yajing, FAN Wenlei, WANG Baowei. Screening for Candidate Genes Related to Egg Production in Wulong Geese Based on Transcriptome and Proteome Analyses[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 232-245.
表 1
RT-qPCR引物信息"
基因 Gene | 引物序列 (5′→3′) Primer sequence | 产物长度/bp Products length |
LRP2 | F: TTTCGCTGTGGAAATGGTCG R: TTCCCTCACAGGTAGGTTGTG | 112 |
TNFSF10 | F: AGTCAATGCTGACAAAGCCC R: CGTCAGGTGTGCTGCTATCC | 88 |
A2M | F: GACTGCCCAGCAACTTTAACAT R: TGGCTGGTGACTGGCTACTTA | 300 |
SNRPA1 | F: CTTTGGACCAGTTCGATGCG R: TGCTCAAGTCCCTCACCGAT | 136 |
PTTG1 | F: ATCTCCAGCCACATCACACTC R: CTGGCTCTCTAATCCAGCAGTC | 151 |
BMP5 | F: ACGTTACGCCATGCCTTCAG R: CCTTCTCTCATGGTTCCGCA | 138 |
FST | F: CCTGATGTTTCTCTGCCACTTC R: GTGTTGTCGTTGACATCCTCC | 180 |
PRLHR | F: CCACACCTACCACGCAGAAT R: AGCCAAGCGGTCTCTTTTCA | 85 |
INHBB | F: TCCGAGATCATCAGCTTCGC R: CTTGTTGCTAGTGTCCGGGT | 213 |
GAPDH | F: TCGGAGTCAACGGATTTGGC R: TTCTCAGCCTTGACTGTGCC | 175 |
表 3
部分候选差异基因和差异蛋白表达趋势"
基因Gene | 蛋白Protein | FC (mRNA) | FC (protein) |
INHBB | Inhibin beta B chain | 50.42 | inf |
AFAP1 | Actin filament associated protein 1 | 0.32 | 0.71 |
MSC | Musculin | 0.21 | 3.03 |
CNGB1 | Cyclic nucleotide-binding domain-containing protein | 0.43 | inf |
CFAP206 | Cilia- and flagella-associated protein 206 | 0.30 | inf |
MRPL51 | 39S ribosomal protein L51,mitochondrial | 2.42 | 0.63 |
INHA | Inhibin alpha chain | 12.16 | inf |
FNDC1 | Fibronectin type Ⅲ domain containing 1 | 0.12 | 0.56 |
FST | Follistatin | 7.26 | - |
SNRPA1 | Small nuclear ribonucleoprotein polypeptide A’ | 2.44 | - |
A2M | C-type lectin domain-containing protein | 0.34 | - |
PTTG1 | Pituitary tumor-transforming 1 | 4.27 | - |
BMP5 | Bone morphogenetic protein 5 | 5.20 | - |
PRLHR | Prolactin-releasing peptide receptor | 0.11 | - |
PRKCA | Protein kinase C | 0.26 | - |
TNFSF10 | TNF superfamily member 10 | 0.24 | - |
LRP2 | LDL receptor related protein 2 | 0.31 | - |
INSR | Tyrosine-protein kinase receptor | 0.46 | - |
PPP3CB | Serine/threonine-protein phosphatase | - | -0.31 |
PPP2R5D | Serine/threonine protein phosphatase 2A regulatory subunit | - | -0.31 |
EGR1 | Early growth response protein | - | -0.66 |
AKT3 | non-specific serine/threonine protein kinase | - | -0.37 |
ACE2 | Angiotensin-converting enzyme | 0.16 | - |
1 | 侯水生, 刘灵芝. 2022年水禽产业现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2023, 59 (3): 274- 280. |
HOU S S , LIU L Z . Current status, future development trends, and suggestions for the waterbird industry in 2022[J]. Chinese Journal of Animal Science, 2023, 59 (3): 274- 280. | |
2 |
杨景晁, 李显耀, 王宝维, 等. 山东省水禽产业的发展基础及"十四五"高质量发展策略[J]. 家畜生态学报, 2023, 44 (6): 92- 96.
doi: 10.3969/j.issn.1673-1182.2023.06.016 |
YANG J C , LI X Y , WANG B W , et al. Development foundation of Shandong waterfowl industry and its 14th five-year high quality development strategy[J]. Acta Ecologae Animalis Domastici, 2023, 44 (6): 92- 96.
doi: 10.3969/j.issn.1673-1182.2023.06.016 |
|
3 | 胡彦竞科. 四川白鹅GnRH、GnIH基因克隆、多态性及其与产蛋量的关联性研究[D]. 重庆: 西南大学, 2017. |
HU Y J K. Cloning, polymorphism of GnRH and GnIH genes and their association with egg production in Sichuan white goose[D]. Chongqing: Southwest University, 2017. (in Chinese) | |
4 |
CHANG Y G , GUO R B , ZENG T , et al. Analysis of transcriptomic differences in the ovaries of high- and low-laying ducks[J]. Genes (Basel), 2024, 15 (2): 181.
doi: 10.3390/genes15020181 |
5 |
WANG Y , WANG S , ZANG Z , et al. Molecular and transcriptomic analysis of the ovary during laying and brooding stages in Zhedong white geese (Anser cygnoides domesticus)[J]. Br Poult Sci, 2024, 65 (5): 631- 644.
doi: 10.1080/00071668.2024.2364351 |
6 |
陈静, 吴薛蓓, 苗冬枝, 等. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55 (8): 3503- 3515.
doi: 10.11843/j.issn.0366-6964.2024.08.023 |
CHEN J , WU X B , MIAO D Z , et al. Comparative analysis of transcriptome of pigeon follicles at early stage of laying interval reveals genes related to follicular development[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3503- 3515.
doi: 10.11843/j.issn.0366-6964.2024.08.023 |
|
7 | 袁素珍. EGR1调控的颗粒细胞凋亡在卵巢衰老中的作用及其机制研究[D]. 武汉: 华中科技大学, 2017. |
YUAN S Z. The role of EGR1-regulated granulosa cell apoptosis in ovarian aging and its mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese) | |
8 | 黄宣, 尹兆正, 徐春晖, 等. 基于TMT技术的不同产蛋性能母鸡卵巢蛋白组学研究[J]. 中国畜牧杂志, 2024, 60 (5): 139- 146. |
HUANG X , YIN Z Z , XU C H , et al. Ovarian proteomics of hens with different laying performance based on TMT technology[J]. Chinese Journal of Animal Science, 2024, 60 (5): 139- 146. | |
9 | 孙金艳, 彭福刚, 赵秀华, 等. 种鹅繁殖性能的影响因素[J]. 黑龙江动物繁殖, 2020, 28 (5): 41- 43. |
SUN J Y , PENG F G , ZHAO X H , et al. Factors affecting reproductive performance of breeding geese[J]. Heilongjiang Journal of Animal Reproduction, 2020, 28 (5): 41- 43. | |
10 | 王莹, 李婉晴, 贺文庆, 等. 红光对京海黄鸡卵巢转录组模式调控分析[J]. 中国畜牧杂志, 2023, 59 (12): 205- 211. |
WANG Y , LI W Q , HE W Q , et al. Analysis of red light on the regulation of transcriptome pattern in the ovary of Jinghai yellow chicken[J]. Chinese Journal of Animal Science, 2023, 59 (12): 205- 211. | |
11 | 冉明霞. miR-202-5p调控鹅颗粒细胞增殖凋亡、脂质沉积和类固醇激素合成的机制研究[D]. 成都: 四川农业大学, 2023. |
RAN M X. Research on the mechanism of miR-202-5p regulating the proliferation, apoptosis, lipid deposition and steroid hormone synthesis of goose follicular granulosa cells[D]. Chengdu: Sichuan Agricultural University, 2023. (in Chinese) | |
12 | 韩昆鹏. 高、低产蛋量京海黄鸡卵巢组织转录组学分析[D]. 扬州: 扬州大学, 2016. |
HAN K P. Transcriptomics analysis of ovaries of high and low egg production Jinghai yellow chicken[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
13 |
LIU Z P , CHAO J R , XU P T , et al. Lonicera flos and Cnicus japonicus extracts improved egg quality partly by modulating antioxidant status, inflammatory-related cytokines and shell matrix protein expression of oviduct in laying hens[J]. Poult Sci, 2023, 102 (4): 102561.
doi: 10.1016/j.psj.2023.102561 |
14 | 刘建高. 钙相关信号参与蛋鸭卵泡发育调控的作用及机制研究[D]. 长沙: 湖南农业大学, 2021. |
LIU J G. Functions of calcium signalling in mediating follicular development in laying ducks and its mechanism[D]. Changsha: Hunan Agricultural University, 2021. (in Chinese) | |
15 | MATHIEN S , TESNIÈRE C , MELOCHE S . Regulation of mitogen-activated protein kinase signaling pathways by the ubiquitin-proteasome system and its pharmacological potential[J]. Pharmacol Rev, 2021, 73 (4): 263- 296. |
16 |
LIN F , FU Y H , HAN J , et al. Changes in the expression of FoxO1 and death ligand genes during follicular atresia in porcine ovary[J]. Genet Mol Res, 2014, 13 (3): 6638- 6645.
doi: 10.4238/2014.August.28.8 |
17 |
KULUS M , KRANC W , SUJKA-KORDOWSKA P , et al. The processes of cellular growth, aging, and programmed cell death are involved in lifespan of ovarian granulosa cells during short-term IVC-Study based on animal model[J]. Theriogenology, 2020, 148, 76- 88.
doi: 10.1016/j.theriogenology.2020.02.044 |
18 | 侯增鑫. 尼罗罗非鱼TNFSF10(TRAIL)免疫功能初步研究[D]. 广州: 中山大学, 2017. |
HOU Z X. Primary study on immune function of TNFSF10(TRAIL)in Tilapia, Oreochromis niloticus[D]. Guangzhou: Sun Yat-Sen University, 2017. (in Chinese) | |
19 | 钟佩. 生殖道微生物及血清代谢物对胚胎移植后妊娠结局的影响及机制探究[D]. 合肥: 安徽医科大学, 2023. |
ZHONG P. The impact and mechanism of reproductive tract microbiota and serum metabolites on pregnancy outcomes after embryo transfer[D]. Hefei: Anhui Medical University, 2023. (in Chinese) | |
20 |
XIE B K , QIN Z X , LIU S , et al. Cloning of porcine pituitary tumor transforming gene 1 and its expression in porcine oocytes and embryos[J]. PLoS One, 2016, 11 (4): e0153189.
doi: 10.1371/journal.pone.0153189 |
21 | 严嘉耕. 比较转录组揭示影响马和驴卵母细胞体外成熟基因的初步研究[D]. 南宁: 广西大学, 2023. |
YAN J G. Comparative transcriptome reveals a preliminary study of genes influencing invitro maturation of horse and donkey oocytes[D]. Nanning: Guangxi University, 2023. (in Chinese) | |
22 |
LI Q N , PAN X C , LI N , et al. Identification of circular RNAs in hypothalamus of gilts during the onset of puberty[J]. Genes (Basel), 2021, 12 (1): 84.
doi: 10.3390/genes12010084 |
23 |
EGBERT J R , SILBERN I , ULIASZ T F , et al. Phosphatases modified by LH signaling in ovarian follicles: testing their role in regulating the NPR2 guanylyl cyclase[J]. Biol Reprod, 2024, 110 (1): 102- 115.
doi: 10.1093/biolre/ioad130 |
24 | 严西萍. 鸭产蛋量和蛋重关键基因的筛选及其调控机制研究[D]. 成都: 四川农业大学, 2023. |
YAN X P. Screening the candidate genes and regulatorypathways associated with the trait of egg-production and egg weight in ducks[D]. Chengdu: Sichuan Agricultural University, 2023. (in Chinese) | |
25 |
YI G Q , SHEN M M , YUAN J W , et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens[J]. BMC Genomics, 2015, 16 (1): 746.
doi: 10.1186/s12864-015-1945-y |
26 |
FARIDI R , YOUSAF R , GU S J , et al. Variants of LRP2, encoding a multifunctional cell-surface endocytic receptor, associated with hearing loss and retinal dystrophy[J]. Clin Genet, 2023, 103 (6): 699- 703.
doi: 10.1111/cge.14312 |
27 |
TOI N , INABA M , ISHIMURA E , et al. Significance of urinary C-megalin excretion in vitamin D metabolism in pre-dialysis CKD patients[J]. Sci Rep, 2019, 9 (1): 2207.
doi: 10.1038/s41598-019-38613-8 |
28 |
CHARLTON J R , HARER M W , SWAN C , et al. Immature megalin expression in the preterm neonatal kidney is associated with urinary loss of vitamin carrier proteins[J]. Pediatr Res, 2019, 85 (3): 405- 411.
doi: 10.1038/s41390-018-0261-z |
29 |
MARKO H L , HORNIG N C , BETZ R C , et al. Genomic variants reducing expression of two endocytic receptors in 46, XY differences of sex development[J]. Hum Mutat, 2022, 43 (3): 420- 433.
doi: 10.1002/humu.24325 |
30 |
GARCIA J , KRIEGER K D , LOITZ C , et al. Regulation of prostate androgens by Megalin and 25-hydroxyvitamin D status: Mechanism for high prostate androgens in African American Men[J]. Cancer Res Commun, 2023, 3 (3): 371- 382.
doi: 10.1158/2767-9764.CRC-22-0362 |
31 |
SIMPSON S , PAL L . Vitamin D and infertility[J]. Curr Opin Obstet Gynecol, 2023, 35 (4): 300- 305.
doi: 10.1097/GCO.0000000000000887 |
32 |
NELSON S M , DAVIS S R , KALANTARIDOU S , et al. Anti-Müllerian hormone for the diagnosis and prediction of menopause: a systematic review[J]. Hum Reprod Update, 2023, 29 (3): 327- 346.
doi: 10.1093/humupd/dmac045 |
33 |
MORIDI I , CHEN A , TAL O , et al. The association between vitamin D and Anti-Müllerian Hormone: A systematic review and meta-analysis[J]. Nutrients, 2020, 12 (6): 1567.
doi: 10.3390/nu12061567 |
34 |
VÁRBÍRÓ S , TAKÁCS I , TÜÜ L , et al. Effects of vitamin D on fertility, pregnancy and polycystic ovary syndrome-a review[J]. Nutrients, 2022, 14 (8): 1649.
doi: 10.3390/nu14081649 |
35 |
SEACHRIST D D , KERI R A . The activin social network: Activin, inhibin, and follistatin in breast development and cancer[J]. Endocrinology, 2019, 160 (5): 1097- 1110.
doi: 10.1210/en.2019-00015 |
36 |
THOMPSON T B , LERCH T F , COOK R W , et al. The structure of the follistatin: Activin complex reveals antagonism of both type I and type II receptor binding[J]. Dev Cell, 2005, 9 (4): 535- 543.
doi: 10.1016/j.devcel.2005.09.008 |
37 | 付献欧. 鹅胚性腺形态结构发育特征及MAPK、TGF-β/Smad信号通路的表达调控研究[D]. 长春: 吉林农业大学, 2023. |
FU X O. Morphological structural and developmental characteristics of goose embryonic gonads and the MAPK and TGF-β/Smad expression and regulation of the signaling pathway[D]. Changchun: Jilin Agricultural University, 2023. (in Chinese) | |
38 |
郭泽媛, 杜张胜, 张雅琦, 等. Smad7介导TGF-β信号通路对绵羊卵泡颗粒细胞增殖的影响[J]. 中国农业科学, 2023, 56 (13): 2597- 2608.
doi: 10.3864/j.issn.0578-1752.2023.13.013 |
GUO Z Y , DU Z S , ZHANG Y Q , et al. Effects of Smad7-mediated TGF-β signaling pathway on proliferation of sheep granulosa cells[J]. Scientia Agricultura Sinica, 2023, 56 (13): 2597- 2608.
doi: 10.3864/j.issn.0578-1752.2023.13.013 |
|
39 | 李芝丰, 孙伟, 储明星. TGF-β通路相关基因在绵羊性腺轴组织的表达分析[J]. 东北农业大学学报, 2021, 52 (2): 43- 49. |
LI Z F , SUN W , CHU M X . Expression analysis of TGF-β pathway related genes in gonadal axis-associated tissues[J]. Journal of Northeast Agricultural University, 2021, 52 (2): 43- 49. | |
40 |
M'BAYE M , HUA G H , KHAN H A , et al. RNAi-mediated knockdown of INHBB increases apoptosis and inhibits steroidogenesis in mouse granulosa cells[J]. J Reprod Dev, 2015, 61 (5): 391- 397.
doi: 10.1262/jrd.2014-158 |
41 | 张智慧, 高鸿霞, 王国庆, 等. VEGF对小鼠卵巢类固醇合成相关基因表达的影响及其机制[J]. 解放军医学杂志, 2024, 49 (6): 679- 685. |
ZHANG Z H , GAO H X , WANG G Q , et al. Effect of VEGF on the expression of genes related to ovarian steroid synthesis in mice and its mechanism[J]. Medical Journal of Chinese People's Liberation Army, 2024, 49 (6): 679- 685. |
[1] | 吴双, 尹娜, 余莫涵, 平玉宇, 白皓, 陈世豪, 常国斌. TRIM39.2过表达对鸡巨噬细胞转录表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 178-188. |
[2] | 王盛琪, 季新雨, 黄福青, 胡曼丽, 王柔淇, 耿玉欣, 孙迎雪, 齐智利, 张鑫. 添加红景天苷的全价粮对犬血液生化指标和肝转录组学的影响[J]. 畜牧兽医学报, 2025, 56(1): 455-465. |
[3] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[4] | 安塔娜, 韩海格, 陶克涛, 宝音德力格尔, 李文博, 芒来. 家马不同毛色遗传特性研究综述[J]. 畜牧兽医学报, 2024, 55(8): 3297-3308. |
[5] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[6] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[7] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[8] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[9] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[10] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[11] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[12] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[13] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[14] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[15] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||