畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (1): 12-23.doi: 10.11843/j.issn.0366-6964.2023.01.002
杨柏高, 郝海生, 杜卫华, 朱化彬, 赵学明*
收稿日期:
2022-04-11
出版日期:
2023-01-23
发布日期:
2023-01-17
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
杨柏高(1991-),男,重庆人,博士生,主要从事动物繁殖研究,E-mail:yangbaigao915@163.com
基金资助:
YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, ZHAO Xueming*
Received:
2022-04-11
Online:
2023-01-23
Published:
2023-01-17
摘要: 牦牛广泛分布于海拔3000~5000m的高原地区,是当地畜牧业经济发展的重要畜种。经过长期适应性进化,牦牛在生理结构以及遗传分子方面表现出高原适应性特征。随着组学技术的广泛应用,牦牛高原适应机制得到进一步揭示。本文参考国内外相关报道,对牦牛高原低氧适应的肺、心生理结构和分子机制,高寒环境适应的被毛周期性调控及脂肪沉积代谢的分子机制,抗病分子基础,雌雄牦牛繁殖的生理基础和分子机制相关研究进展进行综述和展望。
中图分类号:
杨柏高, 郝海生, 杜卫华, 朱化彬, 赵学明. 牦牛高原适应研究进展[J]. 畜牧兽医学报, 2023, 54(1): 12-23.
YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, ZHAO Xueming. Advances in Research on Plateau Adaptation of Yak[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 12-23.
[1] | QIU Q,WANG L Z,WANG K,et al.Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions[J].Nat Commun,2015,6:10283. |
[2] | WANG Y,CAI H Y,LUO X L,et al.Insight into unique somitogenesis of yak (Bos grunniens) with one additional thoracic vertebra[J].BMC Genomics,2020,21(1):201. |
[3] | GE Q Y,GUO Y B,ZHENG W S,et al.Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes[J].Sci Rep,2021,11(1):7786. |
[4] | WAN R D,ZHAO Z Q,ZHAO M,et al.Characteristics of pulmonary microvascular structure in postnatal yaks[J].Sci Rep,2021,11(1):18265. |
[5] | 邓茗月,吴东旺,孔小艳,等.中甸牦牛和德宏黄牛血液生理指标测定与分析[J].江苏农业科学,2020,48(21):211-214.DENG M Y,WU D W,KONG X Y,et al.Determination and analysis of blood physiological indices of Zhongdian yak and Dehong yellow cattle[J].Jiangsu Agricultural Sciences,2020,48(21):211-214.(in Chinese) |
[6] | 李潇,高彦华,彭忠利,等.海拔高度变化对牦牛血细胞生理指标及心、肺组织形态特征的影响[J].家畜生态学报,2022,43(4):47-54.LI X,GAO Y H,PENG Z L,et al.Effect of altitude changes on blood cell physiological parameters and cardiopulmonary histomorphological characteristics of yaks[J].Acta Ecologae Animalis Domastici,2022,43(4):47-54.(in Chinese) |
[7] | 申什菊,张勤文.1日龄大通牦牛心肌低氧适应的组织学特点研究[J].黑龙江畜牧兽医,2019(8):73-75,78,170.SHEN S J,ZHANG Q W.Study of histological characteristics of myocardial hypoxia adaptation in one-day-old Datong yak[J].Heilongjiang Animal Science and Veterinary Medicine,2019(8):73-75,78,170.(in Chinese) |
[8] | QIU Q,ZHANG G J,MA T,et al.The yak genome and adaptation to life at high altitude[J].Nat Genet,2012,44(8):946-949. |
[9] | JI Q M,XIN J W,CHAI Z X,et al.A chromosome-scale reference genome and genome-wide genetic variations elucidate adaptation in yak[J].Mol Ecol Resour,2021,21(1):201-211. |
[10] | GAO X,WANG S,WANG Y F,et al.Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J].Nat Commun,2022,13(1):4887. |
[11] | E G X,BASANG W D,ZHU Y B.Whole-genome analysis identifying candidate genes of altitude adaptive ecological thresholds in yak populations[J].J Anim Breed Genet,2019,136(5):371-377. |
[12] | WANG H,CHAI Z X,HU D,et al.A global analysis of CNVs in diverse yak populations using whole-genome resequencing[J].BMC Genomics,2019,20(1):61. |
[13] | ZHANG S Z,LIU W Y,LIU X F,et al.Structural variants selected during yak domestication inferred from long-read whole-genome sequencing[J].Mol Biol Evol,2021,38(9):3676-3680. |
[14] | XIN J W,CHAI Z X,ZHANG C F,et al.Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments[J].Sci Rep,2019,9(1):7558. |
[15] | GE Q Y,GUO Y B,ZHENG W S,et al.A comparative analysis of differentially expressed mRNAs,miRNAs and circRNAs provides insights into the key genes involved in the high-altitude adaptation of yaks[J].BMC Genomics,2021,22(1):744. |
[16] | WANG H,ZHONG J C,WANG J K,et al.Whole-transcriptome analysis of yak and cattle heart tissues reveals regulatory pathways associated with high-altitude adaptation[J].Front Genet,2021,12:579800. |
[17] | MA J,ZHANG T L,WANG W X,et al.Comparative transcriptome analysis of gayal (Bos frontalis),Yak (Bos grunniens),and cattle (Bos taurus) reveal the high-altitude adaptation[J].Front Genet,2022,12:778788. |
[18] | MA X M,ZHANG Q,LA Y,et al.Differential abundance of brain mitochondrial proteins in yak and cattle:a proteomics-based study[J].Front Vet Sci,2021,8:663031. |
[19] | BABAR A,MIPAM T D,WU S X,et al.Comparative iTRAQ proteomics identified myocardium proteins associated with hypoxia of Yak[J].Curr Proteomics,2019,16(4):314-329. |
[20] | LONG L,ZHU Y P,LI Z Z,et al.Differential expression of skeletal muscle mitochondrial proteins in yak,dzo,and cattle:a proteomics-based study[J].J Vet Med Sci,2020,82(8):1178-1186. |
[21] | WEN W T,ZHAO Z Z,LI R L,et al.Skeletal muscle proteome analysis provides insights on high altitude adaptation of yaks[J].Mol Biol Rep,2019,46(3):2857-2866. |
[22] | XIN J W,CHAI Z X,ZHANG C F,et al.Signature of high altitude adaptation in the gluteus proteome of the yak[J].J Exp Zool B Mol Dev Evol,2020,334(6):362-372. |
[23] | ZHU L,MU J Z,WU Y H,et al.Role of HIF-1α in cold ischemia injury of rat donor heart via the miR-21/PDCD4 pathway[J].Transplant Proc,2020,52(1):383-391. |
[24] | EVANS C E.Hypoxia-inducible factor signaling in inflammatory lung injury and repair[J].Cells,2022,11(2):183. |
[25] | KIERANS S J,TAYLOR C T.Regulation of glycolysis by the hypoxia-inducible factor (HIF):implications for cellular physiology[J].J Physiol,2021,599(1):23-37. |
[26] | YANG Z,HUANG Y J,ZHU L,et al.SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J].Cell Death Dis,2021,12(1):77. |
[27] | KARSHOVSKA E,WEI Y Y,SUBRAMANIAN P,et al.HIF-1α (hypoxia-inducible factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383[J].Arterioscler Thromb Vasc Biol,2020,40(3):583-596. |
[28] | 唐嘉,杨宇,杨凯,等.中甸牦牛HIF-1α基因表达差异分析[J].中国牛业科学,2021,47(3):1-5.TANG J,YANG Y,YANG K,et al.Differential expression of HIF-1α gene in Zhongdian yaks under different feeding conditions[J].China Cattle Science,2021,47(3):1-5.(in Chinese) |
[29] | 赵晓萌,买雨晨,乔自林,等.缺氧诱导因子-1α在牦牛肺脏中的表达及分布情况[J].甘肃畜牧兽医,2020,50(9):44-47.ZHAO X M,MAI Y C,QIAO Z L,et al.Expression and distribution of hypoxia-inducible factor-1α in yak lung[J].Gansu Animal Husbandry and Veterinary,2020,50(9):44-47.(in Chinese) |
[30] | 杜晓华,米晓钰,王海芳,等.脑红蛋白和缺氧诱导因子-1α在牦牛后脑的表达与定位研究[J].畜牧兽医学报, 2021,52(3):789-798.DU X H,MI X Y,WANG H F,et al.Expression and localization of neuroglobin and hypoxia inducible factor-1α in yak's hindbrain[J].Acta Veterinaria et Zootechnica Sinica,2021,52(3):789-798.(in Chinese) |
[31] | 米晓钰,杜晓华,董建英,等.NGB和HIF-1α在牦牛间脑相关组织中的表达与定位[J].农业生物技术学报,2020, 28(10):1810-1819.MI X Y,DU X H,DONG J Y,et al.Expression and localization of NGB and HIF-1α in the tissues related to diencephalon of yak (Bos grunniens)[J].Journal of Agricultural Biotechnology,2020,28(10):1810-1819.(in Chinese) |
[32] | DU X,MI X,LIU X,et al.Comparative study on the distribution and expression of Neuroglobin and Hypoxia-inducible factor-1α in the telencephalon of yak and cattle[J].Braz J Biol,2021,83:e248911. |
[33] | DU X,MAWOLO J B,LIU X,et al.Comparative study of the distribution and expression of Neuroglobin and Hypoxia-inducible factor-1α in the adult and young Yak Brain[J].Braz J Biol,2021,83:e245330. |
[34] | LOBODA A,JOZKOWICZ A,DULAK J.HIF-1 and HIF-2 transcription factors——similar but not identical[J].Mol Cells,2010,29(5):435-442. |
[35] | WU D D,YANG C P,WANG M S,et al.Convergent genomic signatures of high-altitude adaptation among domestic mammals[J].Natl Sci Rev,2020,7(6):952-963. |
[36] | GUAN X W,HANIF Q,LI F Y,et al.The three missense mutations of EPAS1,IL37 and EEF1D genes associated with high-altitude adaptation in Chinese cattle[J].Anim Genet,2020,51(6):987-988. |
[37] | 何向东,夏忆,吉格莫体,等.母牦牛生殖系统中低氧诱导因子基因的表达分析[J].生物技术通报,2019,35(4):82-87.HE X D,XIA Y,JIGE M T,et al.mRNA expressions of hypoxia inducible factor genes in female yak reproductive system[J].Biotechnology Bulletin,2019,35(4):82-87.(in Chinese) |
[38] | 陈树吾,杨琨,姚一凡,等.HIF-2α在不同年龄段牦牛肺脏中的表达及分布[J].现代畜牧兽医,2021(12):12-14.CHEN S W,YANG K,YAO Y F,et al.HIF-2α expression and distribution in yak lungs of different ages[J].Modern Journal of Animal Husbandry and Veterinary Medicine,2021(12):12-14.(in Chinese) |
[39] | APTE R S,CHEN D S,FERRARA N.VEGF in signaling and disease:beyond discovery and development[J].Cell, 2019, 176(6):1248-1264. |
[40] | 周娟,李若男,秦鸿楠,等.Hif-1α、VEGF和iNOS在大通牦牛肺组织中表达的相关性分析[J].黑龙江畜牧兽医,2021(17):122-124,131.ZHOU J,LI R N,QIN H N,et al.Correlation analysis of expression of the Hif-1α,VEGF,and iNOS in lung tissue of Datong yaks[J].Heilongjiang Animal Science and Veterinary Medicine,2021(17):122-124,131.(in Chinese) |
[41] | AUZMENDI J,PUCHULU M B,RODRÍGUEZ J C G,et al.EPO and EPO-receptor system as potential actionable mechanism for the protection of brain and heart in refractory epilepsy and SUDEP[J].Curr Pharm Des,2020,26(12):1356-1364. |
[42] | TSIFTSOGLOU A S.Erythropoietin (EPO) as a key regulator of erythropoiesis,bone remodeling and endothelial transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs):implications in regenerative medicine[J].Cells, 2021,10(8):2140. |
[43] | VIZCARDO-GALINDO G,LEÓN-VELARDE F,VILLAFUERTE F C.High-altitude hypoxia decreases plasma erythropoietin soluble receptor concentration in lowlanders[J].High Alt Med Biol,2020,21(1):92-98. |
[44] | 赵丽玲,向超,王会,等.牦牛EPO、PPARα基因SNP与高原低氧适应的相关性分析[J].中国畜牧兽医,2021,48(5):1633-1646.ZHAO L L,XIANG C,WANG H,et al.The correlation analysis between EPO,PPARα genes SNP and high altitude hypoxia adaptation in yak[J].China Animal Husbandry & Veterinary Medicine,2021,48(5):1633-1646.(in Chinese) |
[45] | 吴周林,赵莉,周贵凤,等.九龙牦牛EPO基因部分片段遗传多态性分析[J].当代畜牧,2017(24):23-25.WU Z L,ZHAO L,ZHOU G F,et al.Analysis on genetic polymorphism of the partial fragment of EPO gene in Jiulong Yak[J]. Contemporary Animal Husbandry,2017(24):23-25.(in Chinese) |
[46] | LOSMAN J A,KOIVUNEN P,KAELIN W G Jr.2-Oxoglutarate-dependent dioxygenases in cancer[J].Nat Rev Cancer,2020,20(12):710-726. |
[47] | LIU X F,LI Z H,YAN Y B,et al.Selection and introgression facilitated the adaptation of Chinese native endangered cattle in extreme environments[J].Evol Appl,2021,14(3):860-873. |
[48] | WANG X G,JU Z H,JIANG Q,et al.Introgression,admixture,and selection facilitate genetic adaptation to high-altitude environments in cattle[J].Genomics,2021,113(3):1491-1503. |
[49] | ZENG L L,HUANG B Z,LI F Y,et al.EGLN1 gene variation in Chinese native cattle and yaks[J].Anim Genet,2018, 49(6):655-656. |
[50] | LIU G Y,ZHAO W B,ZHANG H H,et al.rs1769793 variant reduces EGLN1 expression in skeletal muscle and hippocampus and contributes to high aerobic capacity in hypoxia[J].Proc Natl Acad Sci U S A,2020,117(47):29283-29285. |
[51] | 李鑫,胡建华,索朗,等.牦牛冷季饲养管理与疾病防治[J].畜牧兽医科学(电子版),2021(10):19-21.LI X,HU J H,SUO L,et al.Feeding management and disease control of yak in cold season[J].Graziery Veterinary Sciences (Electronic Version),2021(10):19-21.(in Chinese) |
[52] | 唐文杨,侯如梦,喻佳欣,等.不同性别牦牛各部位纤维性能研究[J].毛纺科技,2019,47(1):10-13.TANG W Y,HOU R M,YU J X,et al.Study on the performance of yak hair of different gender and parts[J].Wool Textile Journal,2019,47(1):10-13.(in Chinese) |
[53] | 亐开兴,廖祥龙,钟绍丽,等.中甸牦牛季节性体重变化动态分析[J].草食家畜,2020(5):10-15.QU K X,LIAO X L,ZHONG S L,et al.Dynamic analysis of seasonal body weight changes in Zhongdian yak[J].Grass-Feeding Livestock,2020(5):10-15.(in Chinese) |
[54] | SHI F Y,GUO N,DEGEN A A,et al.Effects of level of feed intake and season on digestibility of dietary components, efficiency of microbial protein synthesis,rumen fermentation and ruminal microbiota in yaks[J].Animal Feed Science and Technology,2020,259:114359. |
[55] | MA L,XU S X,LIU H J,et al.Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau[J].PeerJ,2019,7:e7645. |
[56] | ZOU H W,HU R,WANG Z S,et al.Effects of nutritional deprivation and re-alimentation on the feed efficiency,blood biochemistry,and rumen microflora in yaks (Bos grunniens)[J].Animals,2019,9(10):807. |
[57] | 贾银海,张成福,姬秋梅,等.牦牛毛微量元素含量与其抗寒性能的关联性分析[J].中国牛业科学,2021,47(1):7-9,53.JIA Y H,ZHANG C F,JI Q H,et al.Study on the relationship between the content of trace elements and cold resistance of yak[J].China Cattle Science,2021,47(1):7-9,53.(in Chinese) |
[58] | BAO P J,LUO J Y,LIU Y B,et al.The seasonal development dynamics of the yak hair cycle transcriptome[J].BMC Genomics,2020,21(1):355. |
[59] | ZHANG X L,BAO P J,YE N,et al.Identification of the key genes associated with the yak hair follicle cycle[J].Genes (Basel),2021,13(1):32. |
[60] | XIONG L,PEI J,KALWAR Q,et al.Fat deposition in yak during different phenological seasons[J].Livest Sci,2021,251:104671. |
[61] | XIONG L,PEI J,CHU M,et al.Fat deposition in the muscle of female and male yak and the correlation of yak meat quality with fat[J].Animals (Basel),2021,11(7):2142. |
[62] | WANG H,ZHONG J C,ZHANG C F,et al.The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak[J].BMC Genomics,2020,21(1):347. |
[63] | ZHANG Y F,GUO X,PEI J,et al.CircRNA expression profile during yak adipocyte differentiation and screen potential circRNAs for adipocyte differentiation[J].Genes (Basel),2020,11(4):414. |
[64] | ZHANG Y F,LIANG C N,WU X Y,et al.Integrated study of transcriptome-wide m6A methylome reveals novel insights into the character and function of m6A methylation during yak adipocyte differentiation[J].Front Cell Dev Biol,2021, 9:689067. |
[65] | XIONG L,PEI J,WU X Y,et al.The Study of the response of fat metabolism to long-term energy stress based on serum,fatty acid and transcriptome profiles in yaks[J].Animals (Basel),2020,10(7):1150. |
[66] | ZHENG J S,DU M,ZHANG J B,et al.Transcriptomic and metabolomic analyses reveal inhibition of hepatic adipogenesis and fat catabolism in yak for adaptation to forage shortage during cold season[J].Front Cell Dev Biol,2022,9:759521. |
[67] | ZOU H W,HU R,DONG X W,et al.Lipid catabolism in starved yak is inhibited by intravenous infusion of β-hydroxybutyrate[J].Animals (Basel),2020,10(1):136. |
[68] | XU Y F,SUN J,CUI Y,et al.Age-related changes in the morphology and the distribution of IgA and IgG in the pharyngeal tonsils of yaks (Bos grunniens)[J].J Morphol,2019,280(2):214-222. |
[69] | 信金伟,姬秋梅.牦牛瘤胃和肠道微生物多样性及影响因素研究进展[J].家畜生态学报,2021,42(8):1-7.XIN J W,JI Q M.Research progress of yak rumen and intestinal microbial diversity and influencing factors[J].Acta Ecologae Animalis Domastici,2021,42(8):1-7.(in Chinese) |
[70] | CHAI J M,CAPIK S F,KEGLEY B,et al.Bovine respiratory microbiota of feedlot cattle and its association with disease[J]. Vet Res,2022,53(1):4. |
[71] | LI Y Q,LI X,JIA D,et al.Complete genome sequence and antimicrobial activity of Bacillus velezensis JT3-1,a microbial germicide isolated from yak feces[J].Biotech,2020,10(5):231. |
[72] | 胡瑞,杨丽菲,李菁.牦牛乳营养与免疫活性成分[J].临床儿科杂志,2021,39(12):952-955.HU R,YANG L F,LI J.Nutritional and immunologically active ingredients in yak milk[J].Journal of Clinical Pediatrics,2021,39(12):952-955.(in Chinese) |
[73] | ZHENG Y,GUAN J Q,WANG L,et al.Comparative proteomic analysis of spleen reveals key immune-related proteins in the yak (Bos grunniens) at different growth stages[J].Comp Biochem Physiol Part D Genomics Proteomics,2022,42:100968. |
[74] | 杨壮,刘晓霞,赵睿骁,等.麦洼牦牛冷冻精液效果试验[J].草食家畜,2021(5):19-24.YANG Z,LIU X X,ZHAO R X,et al.Effect of freezing technology on semen quality of Maiwa yak[J].Grass-Feeding Livestock,2021(5):19-24.(in Chinese) |
[75] | RUAN C M,WANG J,YANG Y X,et al.Proteomic analysis of Tianzhu white yak (Bos grunniens) testis at different sexual developmental stages[J].Anim Sci J,2019,90(3):333-343. |
[76] | ZHAO W S,QUANSAH E,YUAN M,et al.Next-generation sequencing analysis reveals segmental patterns of microRNA expression in yak epididymis[J].Reprod Fertil Dev,2020,32(12):1067-1083. |
[77] | NIKITKINA E,KRUTIKOVA A,MUSIDRAY A,et al.Search for associations of FSHR,INHA,INHAB,PRL,TNP2 and SPEF2 genes polymorphisms with semen quality in Russian Holstein bulls (pilot study)[J].Animals (Basel),2021, 11(10):2882. |
[78] | 蔺蕙,潘阳阳,韩小红,等.牦牛TNP2基因分子特征及其在不同发育阶段睾丸中的表达[J].畜牧与兽医,2021,53(11):6-13.LIN H,PAN Y Y,HAN X H,et al.Molecular characteristics of TNP2 gene in yaks and its quantitation in testis at different developmental stages[J].Animal Husbandry & Veterinary Medicine,2021,53(11):6-13.(in Chinese) |
[79] | HORISAWA-TAKADA Y,KODERA C,TAKEMOTO K,et al.Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis[J].Nat Commun, 2021,12(1):3184. |
[80] | 殷实,王斌,曲尼拉姆,等.牦牛HDAC2基因克隆及其在睾丸中的表达[J].华北农学报,2021,36(3):222-229.YIN S,WANG B,QUNI L M,et al.Cloning of yak HDAC2 gene and its expression pattern in testis[J].Acta Agriculturae Boreali-Sinica,2021,36(3):222-229.(in Chinese) |
[81] | 刘敏清,王亚营,何翃闳,等.牦牛AQP1基因克隆及其在不同年龄牦牛睾丸中的表达[J].农业生物技术学报,2021,29(5):933-942.LIU M Q,WANG Y Y,HE H H,et al.Cloning of yak (Bos grunniens) AQP1 gene and its expression in yak testis of different ages[J].Journal of Agricultural Biotechnology,2021,29(5):933-942.(in Chinese) |
[82] | 毛进彬,毛旭东,涂永强,等.亚丁牦牛繁殖性能调查[J].中国牛业科学,2020,46(2):81-83.MAO J B,MAO X D,TU Y Q,et al.Investigation on reproductive performance of Yading yak[J].China Cattle Science,2020,46(2):81-83.(in Chinese) |
[83] | 索朗扎西,朱彦宾,索朗,等.牦牛繁殖性能的影响因素及提升策略[J].现代农业科技,2021(19):189-190.SUOLANG Z X,ZHU Y B,SUO L,et al.Influencing factors and improving strategies of yak reproductive performance[J].Modern Agricultural Science and Technology,2021(19):189-190.(in Chinese) |
[84] | D'OCCHIO M J,BARUSELLI P S,CAMPANILE G.Influence of nutrition,body condition,and metabolic status on reproduction in female beef cattle:a review[J].Theriogenology,2019,125:277-284. |
[85] | 夏洪泽,崔占鸿,张君.母牦牛繁殖调控研究进展[J].青海畜牧兽医杂志,2019,49(4):57-59.XIA H Z,CUI Z H,ZHANG J.Recent advances of the reproductive regulation of female yak[J].Chinese Qinghai Journal of Animal and Veterinary Sciences,2019,49(4):57-59.(in Chinese) |
[86] | 王志强,张洪波,张君,等.LH、FSH对初情期母牦牛卵巢发育的影响[J].青海畜牧兽医杂志,2017,47(2):24-28.WANG Z Q,ZHANG H B,ZHANG J,et al.Effect of LH and FSH on ovaries development of pubertal female yak[J].Chinese Qinghai Journal of Animal and Veterinary Sciences,2017,47(2):24-28.(in Chinese) |
[87] | CHEN Z,WANG J N,MA J Y,et al.Transcriptome and proteome analysis of pregnancy and postpartum anoestrus ovaries in yak[J].J Vet Sci,2022,23(1):e3. |
[88] | CHEN Y,ZENG R L,KOU J Y,et al.GPR50 participates in and promotes yak oocyte maturation:a new potential oocyte regulatory molecule[J].Theriogenology,2022,181:34-41. |
[89] | 海卓,熊显荣,马鸿程,等.牦牛KAT8基因在组织及卵泡发育过程中的表达[J].中国兽医学报,2021,41(8):1612-1619.HAI Z,XIONG X R,MA H C,et al.Expression profiles of KAT8 gene in different tissues and ovarian follicle development of yak[J].Chinese Journal of Veterinary Science,2021,41(8):1612-1619.(in Chinese) |
[90] | PANAGOPOULOU M,FANIDIS D,AIDINIS V,et al.ENPP2 methylation in health and cancer[J].Int J Mol Sci,2021, 22(21):11958. |
[91] | 马文斌,王萌,潘阳阳,等.ENPP2基因的分子特征及其在雌性牦牛不同繁殖阶段生殖器官中的表达[J].动物医学进展, 2022, 43(1):58-64.MA W B,WANG M,PAN Y Y,et al.Molecular characterization of ENPP2 gene and its expressions in reproductive organs of female yaks (Bos grunniens)[J].Progress in Veterinary Medicine,2022,43(1):58-64.(in Chinese) |
[92] | 王楠,张瑞,潘阳阳,等.牦牛TGF-β1基因克隆及在雌性生殖系统主要器官中的表达定位[J].生物技术通报,2022,38(6):279-290.WANG N,ZHANG R,PAN Y Y,et al.Cloning of yak (Bos grunniens) TGF-β1 gene and its expression in major organs of female reproductive system[J].Biotechnology Bulletin,2022,38(6):279-290.(in Chinese) |
[93] | HE H H,ZHANG H Z,LI Q,et al.Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos[J].Theriogenology,2020,156:46-58. |
[94] | XIONG X R,YANG M Z,YU H L,et al.MicroRNA-342-3p regulates yak oocyte meiotic maturation by targeting DNA methyltransferase 1[J].Reprod Domest Anim,2022,57(7):761-770. |
[95] | LI Q,PAN Y Y,HE H H,et al.DNA methylation regulated by ascorbic acids in yak preimplantation embryo helps to improve blastocyst quality[J].Mol Reprod Dev,2019,86(9):1138-1148. |
[96] | PAN Y Y,WANG M,BALOCH A R,et al.FGF10 enhances yak oocyte fertilization competence and subsequent blastocyst quality and regulates the levels of CD9,CD81,DNMT1,and DNMT3B[J].J Cell Physiol,2019,234(10):17677-17689. |
[97] | PAN Y Y,WANG M,WANG L B,et al.Estrogen improves the development of yak (Bos grunniens) oocytes by targeting cumulus expansion and levels of oocyte-secreted factors during in vitro maturation[J].PLoS One,2020,15(9):e0239151. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[3] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[4] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[5] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[6] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[7] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[8] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[9] | 徐东辉, 徐宇辉, 李瑞哲, 成海建, 马志杰. 牦牛基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(3): 933-943. |
[10] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[11] | 荆扬, 王玉淼, 李洋, 常辉, 马志倩, 李志伟, 肖书奇. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55(3): 1159-1169. |
[12] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[13] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[14] | 刘斌, 王萌, 潘阳阳, 王靖雷, 徐庚全. LPA对牦牛卵丘细胞扩张因子HAS2、PTGS2和PTX3表达的影响[J]. 畜牧兽医学报, 2024, 55(2): 552-561. |
[15] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||