畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3316-3325.doi: 10.11843/j.issn.0366-6964.2022.10.005
黄颖然, 叶欣晴, 刘娟, 于洋*
收稿日期:
2022-02-25
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
于洋,主要从事兽医药物代谢动力学、药物效应动力学、药动/药效学同步模型、细菌耐药性传播机制及防控、抗菌药物联合作用机制及联合用药策略研究,E-mail:graceyyu@scau.edu.cn
作者简介:
黄颖然(1999-),女,广东广州人,本科生,主要从事兽医药理学研究
基金资助:
HUANG Yingran,YE Xinqing,LIU Juan,YU Yang*
Received:
2022-02-25
Online:
2022-10-23
Published:
2022-10-26
摘要: 交叉耐药性(cross resistance)是指细菌耐药性进化过程中,对单一药物产生耐药性的同时,也会对结构或作用机理相似的药物产生耐药性的现象。附属敏感性(collateral sensitivity)则指细菌对某一药物敏感性下降时,反而对其他药物敏感性提高的现象。在抗菌药物的持续压力下,细菌会选择性地发生交叉耐药性或附属敏感性两种不同的进化路径。在后抗生素来临的时代背景下,科学家提出了一种新颖的治疗思路:借用细菌对药物的附属敏感性特征进行治疗方案的设计或优化。然而,细菌附属敏感性进化是极为复杂的过程,其发生概率不稳定且规律性不强。为更好地认知细菌附属敏感性的进化规律及应用前景,本文对影响细菌附属敏感性的关键因素及附属敏感性的产生规律进行综述,并以此提出目前研究的不足以及未来发展的可能方向。
中图分类号:
黄颖然, 叶欣晴, 刘娟, 于洋. 细菌附属敏感性:优化药物治疗的新思路[J]. 畜牧兽医学报, 2022, 53(10): 3316-3325.
HUANG Yingran,YE Xinqing,LIU Juan,YU Yang. Bacterial Collateral Sensitivity:A New Perspective to Optimize Treatments[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3316-3325.
[1] | ESTERLY J S, WAGNER J, MCLAUGHLIN M M, et al. Evaluation of clinical outcomes in patients with bloodstream infections due to gram-negative bacteria according to carbapenem MIC stratification[J]. Antimicrob Agents Chemother, 2012, 56(9):4885-4890. |
[2] | LAXMINARAYAN R. Antibiotic effectiveness:balancing conservation against innovation[J]. Science, 2014, 345(6202):1299-1301. |
[3] | IMAMOVIC L, SOMMER M O A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development[J]. Sci Transl Med, 2013, 5(204):204ra132. |
[4] | LÁZÁR V, SINGH G P, SPOHN R, et al. Bacterial evolution of antibiotic hypersensitivity[J]. Mol Syst Biol, 2013, 9(1):700. |
[5] | PÁL C, PAPP B, LÁZÁR V. Collateral sensitivity of antibiotic-resistant microbes[J]. Trends Microbiol, 2015, 23(7):401-407. |
[6] | BAYM M, STONE L K, KISHONY R. Multidrug evolutionary strategies to reverse antibiotic resistance[J]. Science, 2016, 351(6268):eaad3292. |
[7] | ZHAO B Y, SEDLAK J C, SRINIVAS R, et al. Exploiting temporal collateral sensitivity in tumor clonal evolution[J]. Cell, 2016, 165(1):234-246. |
[8] | IMAMOVIC L, ELLABAAN M M H, MACHADO A M D, et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections[J]. Cell, 2018, 172(1-2):121-134. |
[9] | DHAWAN A, NICHOL D, KINOSE F, et al. Collateral sensitivity networks reveal evolutionary instability and novel treatment strategies in ALK mutated non-small cell lung cancer[J]. Sci Rep, 2017, 7(1):1232. |
[10] | JENSEN P B, HOLM B, SORENSEN M, et al. In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines:preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabin[J]. Br J Cancer, 1997, 75(6):869-877. |
[11] | PLUCHINO K M, HALL M D, GOLDSBOROUGH A S, et al. Collateral sensitivity as a strategy against cancer multidrug resistance[J]. Drug Resist Updat, 2012, 15(1-2):98-105. |
[12] | WANG L Q, DE OLIVEIRA R L, HUIJBERTS S, et al. An acquired vulnerability of drug-resistant melanoma with therapeutic potential[J]. Cell, 2018, 173(6):1413-1425. |
[13] | KIM S, LIEBERMAN T D, KISHONY R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance[J]. Proc Natl Acad Sci U S A, 2014, 111(40):14494-14499. |
[14] | NICHOL D, RUTTER J, BRYANT C, et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution[J]. Nat Commun, 2019, 10(1):334. |
[15] | HERENCIAS C, RODRÍGUEZ-BELTRÁN J, LEÓN-SAMPEDRO R, et al. Collateral sensitivity associated with antibiotic resistance plasmids[J]. eLife, 2021, 10:e65130 |
[16] | ROSENKILDE C E H, MUNCK C, PORSE A, et al. Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase[J]. Nat Commun, 2019, 10(1):618. |
[17] | ROEMHILD R, ANDERSSON D I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics[J]. PLoS Pathog, 2021, 17(1):e1009172. |
[18] | KNOPP M, ANDERSSON D I. Predictable phenotypes of antibiotic resistance mutations[J]. mBio, 2018, 9(3):e00770-18. |
[19] | ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost:is it possible to reverse resistance?[J]. Nat Rev Microbiol, 2010, 8(4):260-271. |
[20] | VOGWILL T, KOJADINOVIC M, MACLEAN R C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas[J]. Proc Biol Sci, 2016, 283(1830):20160151. |
[21] | BENNETT A F, LENSKI R E. An experimental test of evolutionary trade-offs during temperature adaptation[J]. Proc Natl Acad Sci U S A, 2007, 104(S1):8649-8654. |
[22] | VELICER G J, SCHMIDT T M, LENSKI R E. Application of traditional and phylogenetically based comparative methods to test for a trade-off in bacterial growth rate at low versus high substrate concentration[J]. Microb Ecol, 1999, 38(3):191-200. |
[23] | PALMER A C, KISHONY R. Opposing effects of target overexpression reveal drug mechanisms[J]. Nat Commun, 2014, 5(1):4296. |
[24] | TOPRAK E, VERES A, MICHEL J B, et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection[J]. Nat Genet, 2012, 44(1):101-105. |
[25] | LÁZÁR V, NAGY I, SPOHN R, et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network[J]. Nat Commun, 2014, 5(1):4352. |
[26] | DRAGOSITS M, MOZHAYSKIY V, QUINONES-SOTO S, et al. Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli[J]. Mol Syst Biol, 2013, 9:643. |
[27] | OSHIMA T, AIBA H, MASUDA Y, et al. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12[J]. Mol Microbiol, 2002, 46(1):281-291. |
[28] | VENKATESH B, BABUJEE L, LIU H, et al. The Erwinia chrysanthemi 3937 PhoQ sensor kinase regulates several virulence determinants[J]. J Bacteriol, 2006, 188(8):3088-3098. |
[29] | ROEMHILD R, LINKEVICIUS M, ANDERSSON D I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin[J]. PLoS Biol, 2020, 18(1):e3000612. |
[30] | BRYANT D W, MCCALLA D R. Nitrofuran induced mutagenesis and error prone repair in Escherichia coli[J]. Chem-Biol Interact, 1980, 31(2):151-166. |
[31] | HUISMAN O, D'ARI R. An inducible DNA replication-cell division coupling mechanism in E. coli[J]. Nature, 1981, 290(5809):797-799. |
[32] | BI E, LUTKENHAUS J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring[J]. J Bacteriol, 1993, 175(4):1118-1125. |
[33] | MIZUSAWA S, GOTTESMAN S. Protein degradation in Escherichia coli:The lon gene controls the stability of sulA protein[J]. Proc Natl Acad Sci U S A, 1983, 80(2):358-362. |
[34] | AULIN L B S, LIAKOPOULOS A, VAN DER GRAAF P H, et al. Design principles of collateral sensitivity-based dosing strategies[J]. Nat Commun, 2021, 12(1):5691. |
[35] | ARDELL S M, KRYAZHIMSKIY S. The population genetics of collateral resistance and sensitivity[J]. eLife, 2021, 10:e73250. |
[36] | APJOK G, BOROSS G, NYERGES Á, et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations[J]. Mol Biol Evol, 2019, 36(8):1601-1611. |
[37] | CHEN H L, JIANG Y, LI M M, et al. Acquisition of tigecycline resistance by carbapenem-resistant Klebsiella pneumoniae confers collateral hypersensitivity to aminoglycosides[J]. Front Microbiol, 2021, 12:674502. |
[38] | GAGNEUX S, LONG C D, SMALL P M, et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis[J]. Science, 2006, 312(5782):1944-1946. |
[39] | RODRíGUEZ-ROJAS A, MACIÁ M D, COUCE A, et al. Assessing the emergence of resistance:the absence of biological cost in vivo may compromise fosfomycin treatments for P. Aeruginosa infections[J]. PLoS One, 2010, 5(4):e10193. |
[40] | BJOÖRKMAN J, NAGAEV I, BERG O G, et al. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance[J]. Science, 2000, 287(5457):1479-1482. |
[41] | MAISNIER-PATIN S, PAULANDER W, PENNHAG A, et al. Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19[J]. J Mol Biol, 2007, 366(1):207-215. |
[42] | BARBOSA C, TREBOSC V, KEMMER C, et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects[J]. Mol Biol Evol, 2017, 34(9):2229-2244. |
[43] | JONES D F. Proceedings of the sixth International congress of genetics[M]. New York:Brooklyn Botanic Garden, 1932. |
[44] | MIRA P M, CRONA K, GREENE D, et al. Rational design of antibiotic treatment plans:a treatment strategy for managing evolution and reversing resistance[J]. PLoS One, 2015, 10(9):e0139387. |
[45] | MALTAS J, WOOD K B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance[J]. PLoS Biol, 2019, 17(10):e3000515. |
[46] | OZ T, GUVENEK A, YILDIZ S, et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution[J]. Mol Biol Evol, 2014, 31(9):2387-2401. |
[47] | BILGIN N, RICHTER A A, EHRENBERG M, et al. Ribosomal RNA and protein mutants resistant to spectinomycin[J]. EMBO J, 1990, 9(3):735-739. |
[48] | BABA T, ARA T, HASEGAWA M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:the Keio collection[J]. Mol Syst Biol, 2006, 2(1):2006. 0008. |
[49] | LOZOVSKY E R, CHOOKAJORN T, BROWN K M, et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite[J]. Proc Natl Acad Sci U S A, 2009, 106(29):12025-12030. |
[50] | LINDSEY H A, GALLIE J, TAYLOR S, et al. Evolutionary rescue from extinction is contingent on a lower rate of environmental change[J]. Nature, 2013, 494(7438):463-467. |
[51] | REYNOLDS M G. Compensatory evolution in rifampin-resistant Escherichia coli[J]. Genetics, 2000, 156(4):1471-1481. |
[52] | MACLEAN R C, PERRON G G, GARDNER A. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa[J]. Genetics, 2010, 186(4):1345-1354. |
[53] | HALL A R, MACLEAN R C. Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa[J]. Evolution, 2011, 65(8):2370-2379. |
[54] | SOLÉ M, FÀBREGA A, COBOS-TRIGUEROS N, et al. In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit:mechanisms of resistance and antimicrobial exposure[J]. J Antimicrob Chemother, 2015, 70(11):3004-3013. |
[55] | DALLINGER W H. The president's address[J]. J Roy Microsc Soc, 1887, 7(2):185-199. |
[56] | KLIRONOMOS J N, ALLEN M F, RILLIG M C, et al. Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system[J]. Nature, 2005, 433(7026):621-624. |
[57] | JAHN L J, MUNCK C, ELLABAAN M M H, et al. Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes[J]. Front Microbiol, 2017, 8:816. |
[58] | LOSOS J B. Convergence, adaptation, and constraint[J]. Evolution, 2011, 65(7):1827-1840. |
[59] | ROSENBERG E Y, BERTENTHAL D, NILLES M L, et al. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein[J]. Mol Microbiol, 2003, 48(6):1609-1619. |
[60] | LIN D L, TRAN T, ALAM J Y, et al. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc:reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore[J]. Antimicrob Agents Chemother, 2014, 58(7):4238-4241. |
[61] | RODRÍGUEZ-VERDUGO A, GAUT B S, TENAILLON O. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress[J]. BMC Evol Biol, 2013, 13(1):50. |
[62] | ALLEN R C, PFRUNDER-CARDOZO K R, HALL A R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions[J]. mSystems, 2021, 6(6):e01055-21. |
[63] | PODNECKY N L, FREDHEIM E G A, KLOOS J, et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli[J]. Nat Commun, 2018, 9(1):3673. |
[1] | 苏依曼, 叶嘉莉, 邱文粤, 章心婷, 庞晓玥, 王荣梅, 唐兆新, 苏荣胜. 积雪草酸通过抑制HMGB1/TLR4/NF-κB通路减轻脂多糖诱导肉鸡肾细胞焦亡[J]. 畜牧兽医学报, 2024, 55(4): 1777-1786. |
[2] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[3] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[4] | 周文惠, 包红霞, 王俊豪, 黄远玲, 王文惠, 郝海红. 甘草查尔酮A与三种抗生素联用对产气荚膜梭菌感染小鼠的治疗作用[J]. 畜牧兽医学报, 2024, 55(1): 334-345. |
[5] | 范锦全, 张宇航, 唐午阳, 赵欣宇, 李丕顺, 郑晓峰. 地西他滨对猪圆环病毒2型的体外抑制作用[J]. 畜牧兽医学报, 2023, 54(12): 5134-5142. |
[6] | 梁雾滢, 刘镇, 曾玉淇, 吕俊瑾, 莫睿文, 远立国. 1-甲基海因对慢性疼痛大鼠钠离子通道蛋白Nav1.8的干预作用[J]. 畜牧兽医学报, 2023, 54(12): 5312-5317. |
[7] | 单强, 王雪, 朱要宏, 王九峰. 鼠李糖乳杆菌抗炎机制及其在防治家畜疾病中的应用前景[J]. 畜牧兽医学报, 2023, 54(11): 4537-4550. |
[8] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
[9] | 孙盼盼, 曹志刚, 凌小雅, 孙娜, 孙耀贵, 李宏全. 苦参碱联合不同抗生素抗炎作用比较研究[J]. 畜牧兽医学报, 2023, 54(10): 4411-4421. |
[10] | 王志霞, 白莉霞, 秦哲, 刘希望, 杨亚军, 李世宏, 葛闻博, 李剑勇. 阿司匹林丁香酚酯颗粒剂有关物质检测方法的建立与验证[J]. 畜牧兽医学报, 2023, 54(8): 3500-3509. |
[11] | 王芮杰, 洪志楷, 董英娇, 陈瑶, 王晋宇, 王冠华. 基于UPLC-Q-TOF-MS/MS代谢组学研究土霉素和穿心莲内酯对鸡代谢的影响[J]. 畜牧兽医学报, 2023, 54(7): 3078-3090. |
[12] | 张潇, 李丹丹, 田红利, 欧春敏, 杨龙, 欧阳五庆, 郑寅. 侧柏叶抗红色毛癣菌主要活性成分α-蒎烯以ERG-3为靶点发挥抗真菌作用[J]. 畜牧兽医学报, 2023, 54(4): 1690-1702. |
[13] | 林梦娟, 高沙沙, 赵星辰, 仲宇欣, 吴俊, 张军忍, 郭大伟. 常山酮抗原虫作用研究进展[J]. 畜牧兽医学报, 2023, 54(3): 924-933. |
[14] | 陈洋, 王悦力, 陈诗奇, 李楠鑫, 张伟, 舒刚, 徐傅能, 李昊欢, 林居纯, 符华林. 基于寡肽转运蛋白的氟苯尼考肠吸收特性研究[J]. 畜牧兽医学报, 2023, 54(3): 1240-1248. |
[15] | 杨艳北, 许晶, 刘婉萍, 陶艾妮, 冯育林, 孙勇, 王闯, 刘建. 低浓度阿奇霉素对猪链球菌2型蛋白表达、荚膜多糖与药物敏感性的影响[J]. 畜牧兽医学报, 2023, 54(2): 757-765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||