| [1] BLOEMHOF S, MATHUR P K, KNOL E F, et al. Effect of daily environmental temperature on farrowing rate and total born in dam line sows[J]. J Anim Sci, 2013, 91(6):2667-2679.[2] VAN RENSBURG L J, SPENCER B T. The influence of environmental temperatures on farrowing rates and litter sizes in South African pig breeding units[J]. Onderstepoort J Vet Res, 2014, 81(1), doi:10.4102/ojvr.v81i1.824.
 [3] ⅡDA R, KOKETSU Y. Climatic factors associated with peripartum pig deaths during hot and humid or cold seasons[J]. Prev Vet Med, 2014, 115(3-4):166-172.
 [4] BODDICKER R L, SEIBERT J T, JOHNSON J S, et al. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs[J]. PLoS One, 2014, 9(11):e110859.
 [5] LARSON G, LIU R R, ZHAO X B, et al. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA[J]. Proc Natl Acad Sci U S A, 2010, 107(17):7686-7691.
 [6] 国家畜禽遗传资源委员会. 中国畜禽遗传资源志:猪志[M]. 北京:中国农业出版社, 2011:2-16.
 China National Commission of Animal Genetic Resources. Animal genetic resources in China:pigs[M]. Beijing:China Agricultural Press, 2011:2-16. (in Chinese)
 [7] LI M Z, TIAN S L, JIN L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nat Genet, 2013, 45(12):1431-1438.
 [8] AI H, FANG X, YANG B, et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing[J]. Nat Genet, 2015, 47(3):217-225.
 [9] NRC. Nutrient requirements of swine[M]. Washington, DC:National Academy Press, 1998.
 [10] 李延森, 沈祥星, 李春梅. 母猪发情和产仔性能与环境温度变化相关性分析[J]. 畜牧兽医学报, 2016, 47(6):1133-1139.
 LI Y S, SHEN X X, LI C M. Correlation analysis between the ambient temperatures and reproductive performance of sows[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(6):1133-1139. (in Chinese)
 [11] SHUTT T E, GRAY M W. Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes[J]. J Mol Evol, 2006, 62(5):588-599.
 [12] 郭春华, 王康宁. 环境温度对生长猪生产性能的影响[J]. 动物营养学报, 2006, 18(4):287-293.
 GUO C H, WANG K N. Effects of environmental temperature on the performance of growing pigs[J]. Journal of Animal Nutrition, 2006, 18(4):287-293. (in Chinese)
 [13] CAMERLINK I, BOLHUIS J E, DUIJVESTEIJN N, et al. Growth performance and carcass traits in pigs selected for indirect genetic effects on growth rate in two environments[J]. J Anim Sci, 2014, 92(6):2612-2619.
 [14] RENAUDEAU D, GOURDINE J L, ST-PIERRE N R. A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs[J]. J Anim Sci, 2011, 89(7):2220-2230.
 [15] LE BELLEGO L, VAN MILGEN J, NOBLET J. Effect of high temperature and low-protein diets on the performance of growing-finishing pigs[J]. J Anim Sci, 2002, 80(3):691-701.
 [16] HEITMAN H Jr, MORRISON S R. Ambient temperature and protein level in the ration of growing pigs[J]. Int J Biometeorol, 1988, 32(1):44-46.
 [17] MORALES A, GRAGEOLA F, GARCÍA H, et al. Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures[J]. J Anim Physiol Anim Nutr, 2014, 98(5):928-935.
 [18] ZHANG J, MA J D, LONG K, et al. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose[J]. Peer J, 2016, 4(2):e1768.
 [19] LUO Y J, YANG X H, GAO Y Q. Mitochondrial DNA response to high altitude:A new perspective on high-altitude adaptation[J]. Mitochondr DNA, 2013, 24(4):313-319.
 [20] LI Y, HUANG W, YU Q, et al. Lower mitochondrial DNA content relates to high-altitude adaptation in Tibetans[J]. Mitochondr DNA Part A, 2016, 27(1):753-757.
 [21] SOLAINI G, SGARBI G, BARACCA A. Oxidative phosphorylation in cancer cells[J]. Biochim Biophys Acta, 2011, 1807(6):534-542.
 [22] GENNIS R, FERGUSON-MILLER S. Structure of cytochrome c oxidase, energy generator of aerobic life[J]. Science, 1995, 269(5227):1063-1064.
 [23] TAN G F, WANG F, ZHANG X Y, et al. Different lengths, copies and expression levels of the mitochondrial atp6 gene in male sterile and fertile lines of carrot (Daucus carota L.)[J]. Mitochondr DNA Part A, 2017:1-9.
 [24] TAN A S, BATY J W, DONG L F, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA[J]. Cell Metab, 2015, 21(1):81-94.
 [25] ZHANG J, ZHOU C W, MA J D, et al. Breed, sex and anatomical location-specific gene expression profiling of the porcine skeletal muscles[J]. BMC Genet, 2013, 14:53.
 [26] BAKTHISARAN R, TANGIRALA R, RAO C M. Small heat shock proteins:Role in cellular functions and pathology[J]. Biochim Biophys Acta, 2015, 1854(4):291-319.
 [27] NAGAYACH R, GUPTA U D, PRAKASH A. Expression profiling of HSP70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions[J]. Small Rumin Res, 2017, 147:41-47.
 [28] BANERJEE D, UPADHYAY R C, CHAUDHARY U B, et al. Seasonal variation in expression pattern of genes under HSP70[J]. Cell Stress Chaperon, 2014, 19(3):401-408.
 [29] PARMAR M S, MADAN A K, HUOZHA R, et al. Heat shock protein70(HSP70) gene expression pattern in peripheral blood mononuclear cells (PBMCs) during different seasons in Sahiwal cows (Bos indicus)[J]. J Anim Res, 2015, 5(1):109-113.
 [30] LIU Z F, LI B L, TONG H S, et al. Pathological changes in the lung and brain of mice during heat stress and cooling treatment[J]. World J Emerg Med, 2011, 2(1):50-53.
 |