Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (3): 1120-1133.doi: 10.11843/j.issn.0366-6964.2025.03.014
• Animal Genetics and Breeding • Previous Articles Next Articles
YANG Yuting(), CHEN Guoliang, CHANG Qiaoning, BAO Wu, LIU Jingchao, JI Mengting, RONG Xiaoyin, GUO Xiaohong, YANG Yang*(
), LI Bugao*(
)
Received:
2024-09-23
Online:
2025-03-23
Published:
2025-04-02
Contact:
YANG Yang, LI Bugao
E-mail:16635048175@163.com;yangyangyh@163.com;jinrenn@163.com
CLC Number:
YANG Yuting, CHEN Guoliang, CHANG Qiaoning, BAO Wu, LIU Jingchao, JI Mengting, RONG Xiaoyin, GUO Xiaohong, YANG Yang, LI Bugao. miR-375-3p Targets Fam229a to Regulate Porcine Precursor Adipocyte Differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1120-1133.
Table 1
The primers sequence of qRT-PCR"
基因 Gene | 引物序列(5′→3′) Primers sequence | 产物长度/bp Products length | 物种 Species |
β-actin | F: GGCACCACACCTTCTACAATG R: GGGGTGTTGAAGGTCTCAAAC | 158 | 鼠 |
CEBPα | F: GCTGAGCGACGAGTACAAGA R: GCTTGAACAAGTTCCGCAGG | 191 | 鼠 |
CEBPβ | F: GCCAAGAAGACGGTGGACAA R: AGCTGCTCCACCTTCTTCTG | 173 | 鼠 |
PPARγ | F: GGGGATGTCTCACAATGCCA R: CAGACTCTGGGTTCAGCTGG | 107 | 鼠 |
FABP4 | F: GATGCCTTTGTGGGAACCTG R: TCCTGTCGTCTGCGGTGATT | 232 | 鼠 |
ZFP423 | F: CAAGAAGTCCAAGGCTGAG R: TTGAGGTCGCACTGATTG | 132 | 鼠 |
ZFP521 | F: CTCAGCAGACCTCCGATAT R: GTAAGACCTCCAAGCAATACT | 180 | 鼠 |
β-actin | F: CCAGGTCATCACCATCGG R: CCGTGTTGGCGTAGAGGT | 158 | 猪 |
CEBPα | F: AGCCAAGAAGTCGGTAGA R: CGGTCATTGTCACTGGTC | 150 | 猪 |
PPARγ | F: AGAGTATGCCAAGAACATCC R: AGGTCGCTGTCATCTAATTC | 261 | 猪 |
FABP4 | F: AAGTCAAGAGCACCATAACC R: GATACATTCCACCACCAACT | 119 | 猪 |
Fig. 1
Expression characteristics of miR-375-3p A. Differential expression of miR-375-3p between Mashen pigs (MS) and DLY pigs (DLY); B. Differential expression of adipogenic related genes in local pig belly fat (FZ); C. The expression of miR-375-3p in different tissues was analyzed by qRT-PCR; D. Differential expression of miR-375-3p in DLY pigs at 0, 90 and 180 days; E. Differential expression of miR-375-3p in high lipid model; F. Expression of miR-375-3p at different stages of porcine precursor adipocyte differentiation. *. P < 0.05, **. P < 0.01, the same as below. The different lowercase letters indicate significant difference(P < 0.05), the same as below"
Fig. 2
Effect of miR-375-3p on porcine adipocyte generation A. The overexpression efficiency of miR-375-3p was detected in porcine primary precursor adipocytes; B. Expression of key genes of adipogenesis after overexpression of miR-375-3p; C. Oil Red O staining and quantitative analysis after overexpression of miR-375-3p; D. Interference efficiency of miR-375-3p; E. The expression of key genes of adipogenesis after interfering with miR-375-3p; F. Oil Red O staining and quantitative analysis after interfering with miR-375-3p"
Fig. 3
Effect of miR-375-3p on adipogenic differentiation of C3H10T1/2 cells A. The overexpression efficiency of miR-375-3p was detected in C3H10T1/2 cells; B. Expression of key genes of adipogenesis after overexpression of miR-375-3p; C. Oil Red O staining and quantitative analysis after overexpression of miR-375-3p; D. Interference efficiency of miR-375-3p; E. The expression of key genes of adipogenesis after interfering with miR-375-3p; F. Oil Red O staining and quantitative analysis after interfering with miR-375-3p"
Fig. 4
miR-375-3p and its target gene binding prediction A. transcriptome sequencing to screen target genes; B, C. RNAhybrid prediction of the binding sites of miR-375-3p and the target gene Fam229a; D, E. In C3H10T1/2 cells, the effects of overexpressing and inhibiting miR-375-3p on Fam229a were investigated; F. Dual luciferase reporting of Fam229a targeting miR-375-3p"
Fig. 5
Expression characteristics of Fam229a A. The expression of Fam229a in different tissues was analyzed by qRT-PCR; B. Differential expression of Fam229a between Mashen pigs and DLY pigs; C. Differential expression of Fam229a at day 0, 90 and 180 in DLY pigs; D. Differential expression of Fam229a in high-fat model; E. The expression of Fam229a at different stages of porcine precursor adipocyte differentiation; F. PCR amplification results of the Fam229a gene"
Fig. 6
Effect of Fam229a on adipogenic differentiation of C3H10T1/2 cells A. The overexpression efficiency of Fam229a was detected in C3H10T1/2 cells; B. Expression of key genes of adipogenesis after overexpression of Fam229a; C. Oil Red O staining and quantitative analysis after overexpression of Fam229a; D. Interference efficiency of Fam229a; E. Expression of key genes of adipogenesis after interfering with Fam229a; F. Oil Red O staining and quantitative analysis after interfering with Fam229a; G, H. Salvage tests"
1 |
MISHRA G , TOWNSEND K L . The metabolic and functional roles of sensory nerves in adipose tissues[J]. Nat Metab, 2023, 5 (9): 1461- 1474.
doi: 10.1038/s42255-023-00868-x |
2 |
GHABEN A L , SCHERER P E . Adipogenesis and metabolic health[J]. Nat Rev Mol Cell Biol, 2019, 20 (4): 242- 258.
doi: 10.1038/s41580-018-0093-z |
3 |
LI H B , LIAO X G , LAN M , et al. Arctigenin modulates adipogenic-osteogenic balance in the bone marrow microenvironment of ovariectomized rats via the MEK1/PPARγ/Wnt/β-catenin pathway[J]. Chem Biol Drug Des, 2024, 104 (3): e14625.
doi: 10.1111/cbdd.14625 |
4 |
LUO Z C , LU Y H , ZHENG S L , et al. Chemically modified PPARγ mRNA unleashes adipogenic potential in 3T3-L1-predipocytes: An approach for accelerated wound healing[J]. Int J Med Sci, 2024, 21 (13): 2480- 2493.
doi: 10.7150/ijms.97885 |
5 |
TAN X Q , ZHU T T , ZHANG L Q , et al. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes[J]. Adipocyte, 2022, 11 (1): 120- 132.
doi: 10.1080/21623945.2022.2030570 |
6 |
YANG Z , BIAN C J , ZHOU H , et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1[J]. Stem Cells Dev, 2011, 20 (2): 259- 267.
doi: 10.1089/scd.2010.0072 |
7 |
EL-MAHDY H A , SALLAM A A M , ISMAIL A , et al. miRNAs inspirations in hepatocellular carcinoma: detrimental and favorable aspects of key performers[J]. Pathol Res Pract, 2022, 233, 153886.
doi: 10.1016/j.prp.2022.153886 |
8 |
ELREBEHY M A , AL-SAEED S , GAMAL S , et al. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: a spotlight on signaling pathways interplay—a review[J]. Int J Biol Macromol, 2022, 214, 583- 600.
doi: 10.1016/j.ijbiomac.2022.06.134 |
9 |
DOGHISH A S , HASHEM A H , SHEHABELDINE A M , et al. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: synthesis, characterization, antimicrobial, and anticancer activities[J]. J Drug Deliv Sci Technol, 2022, 77, 103874.
doi: 10.1016/j.jddst.2022.103874 |
10 |
ELKHAWAGA S Y , ISMAIL A , ELSAKKA E G E , et al. miRNAs as cornerstones in adipogenesis and obesity[J]. Life Sci, 2023, 315, 121382.
doi: 10.1016/j.lfs.2023.121382 |
11 |
KURYLOWICZ A . microRNAs in human adipose tissue physiology and dysfunction[J]. Cells, 2021, 10 (12): 3342.
doi: 10.3390/cells10123342 |
12 |
AGBU P , CARTHEW R W . MicroRNA-mediated regulation of glucose and lipid metabolism[J]. Nat Rev Mol Cell Biol, 2021, 22 (6): 425- 438.
doi: 10.1038/s41580-021-00354-w |
13 |
ZHANG Q , CAI R , TANG G R , et al. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes[J]. J Anim Sci Biotechnol, 2021, 12 (1): 12.
doi: 10.1186/s40104-020-00525-3 |
14 | GAN M L , SHEN L Y , FAN Y , et al. ssc-miR-451 regulates porcine primary adipocyte differentiation by targeting ACACA[J]. Animals (Basel), 2020, 10 (10): 1891. |
15 |
GAO Y , WANG Y Q , CHEN X C , et al. MiR-127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes[J]. J Cell Physiol, 2019, 234 (12): 21838- 21850.
doi: 10.1002/jcp.28660 |
16 |
CHENG S H , DI Z H , HIRMAN A R , et al. MiR-375-3p alleviates the severity of inflammation through targeting YAP1/LEKTI pathway in HaCaT cells[J]. Biosci Biotechnol Biochem, 2020, 84 (10): 2005- 2013.
doi: 10.1080/09168451.2020.1783196 |
17 | CHANG K P , WEI Z X , CAO H . miR-375-3p inhibits the progression of laryngeal squamous cell carcinoma by targeting hepatocyte nuclear factor-1β[J]. Oncol Lett, 2020, 20 (4): 80. |
18 |
LI Y F , LI X F , WANG L , et al. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells[J]. Biotechnol Lett, 2021, 43 (2): 353- 367.
doi: 10.1007/s10529-020-03013-w |
19 |
SUN T H , LI C T , XIONG L F , et al. miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin[J]. PLoS One, 2017, 12 (2): e0171281.
doi: 10.1371/journal.pone.0171281 |
20 | ZHUANG Y , YANG D C , SHI S , et al. MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4[J]. Comput Intell Neurosci, 2022, 2022, 9629158. |
21 | SEELIGER C , KRAUSS T , HONECKER J , et al. miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells[J]. Sci Rep, 2022, 12 (1): 9557. |
22 | XU X N , CHEN X X , XU M , et al. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells[J]. Aging, 2019, 11 (18): 7357- 7385. |
23 | ZHANG C , ZHU Z L , GAO J X , et al. Plasma exosomal miR-375-3p regulates mitochondria-dependent keratinocyte apoptosis by targeting XIAP in severe drug-induced skin reactions[J]. Sci Transl Med, 2020, 12 (574): eaaw6142. |
24 | 卢金喜, 余红梅, 齐孝安, 等. miR-375-3p过表达的甲状腺乳头状癌细胞增殖和侵袭能力变化[J]. 山东医药, 2023, 63 (14): 50- 54. |
LU J X , YU H M , QI X A , et al. Effects of over-expression of miR-375-3p on proliferation and invasion of thyroid papillary carcinoma cells[J]. Shandong Medical Journal, 2023, 63 (14): 50- 54. | |
25 | LIU S Y , SUN G J , YUAN B , et al. miR-375 negatively regulates porcine preadipocyte differentiation by targeting BMPR2[J]. FEBS Lett, 2016, 590 (10): 1417- 1427. |
26 | CHEN S , ZHENG Y F , ZHANG S , et al. Promotion effects of miR-375 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells[J]. Stem Cell Rep, 2017, 8 (3): 773- 786. |
27 | GEZGINCI-OKTAYOGLU S , SANCAR S , KARATUG-KACAR A , et al. miR-375 induces adipogenesis through targeting Erk1 in pancreatic duct cells under the influence of sodium palmitate[J]. J Cell Physiol, 2021, 236 (5): 3881- 3895. |
28 | LEI L , ZHOU C , YANG X , et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol, 2018, 45 (8): 819- 831. |
29 | SAKURAI N , FUJIHARA Y , KOBAYASHI K , et al. CRISPR/Cas9-mediated disruption of lipocalins, Ly6g5b, and Ly6g5c causes male subfertility in mice[J]. Andrology, 2024, 12 (5): 981- 990. |
30 | CHEN H L , MA L , YANG W J , et al. POLR3G promotes EMT via PI3K/AKT signaling pathway in bladder cancer[J]. FASEB J, 2023, 37 (12): e23260. |
31 | LIU X H , ZHANG W Y , WANG H R , et al. Increased expression of POLR3G predicts poor prognosis in transitional cell carcinoma[J]. PeerJ, 2020, 8, e10281. |
32 | LAUTRÉ W , RICHARD E , FEUGEAS J P , et al. The POLR3G subunit of human RNA polymerase Ⅲ regulates tumorigenesis and metastasis in triple-negative breast cancer[J]. Cancers (Basel), 2022, 14 (23): 5732. |
33 | YU F Y , ZHAO X Y , LI M T , et al. SLITRK6 promotes the progression of lung adenocarcinoma by regulating PI3K/AKT/mTOR signaling and Warburg effect[J]. Apoptosis, 2023, 28 (7-8): 1216- 1225. |
34 | MIR M A , PANDITH A A , MANSOOR S , et al. Differential expression of SLITRK6 gene as a potential therapeutic target for urothelial carcinoma in particular upper tract cancer[J]. Gene, 2023, 878, 147583. |
35 | FARRUGIA A J , RODRÍGUEZ J , ORGAZ J L , et al. CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion[J]. J Cell Biol, 2020, 219 (9): e201912159. |
36 | LIN W M , CHEN L , MENG W J , et al. C/EBPα promotes porcine pre-adipocyte proliferation and differentiation via mediating MSTRG. 12568.2/FOXO3 trans-activation for STYX[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (10): 159206. |
37 | KIM M S , BAEK J H , LEE J , et al. Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation[J]. Cell Death Dis, 2023, 14 (11): 776. |
38 | DANG T N , TIONGCO R P , BROWN L M , et al. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma[J]. BMC Cancer, 2022, 22 (1): 300. |
39 | DANG T N , TAYLOR J L , KILROY G , et al. SIAH2 is expressed in adipocyte precursor cells and interacts with EBF1 and ZFP521 to promote adipogenesis[J]. Obesity (Silver Spring), 2021, 29 (1): 98- 107. |
40 | LI B L , LIU S B , HE Z , et al. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation[J]. Int J Biochem Cell Biol, 2024, 167, 106507. |
[1] | HUANG Yani, TANG Xi, LI Jingquan, WEI Jiacheng, WU Zhenfang, LI Xinyun, XIAO Shijun, ZHANG Zhiyan. Large-scale Population Analysis of Potential Causal Genes for Daily Weight Gain and Age at 100 kg in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1100-1109. |
[2] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. |
[3] | PAN Junyi, WU Qingyao, TAN Bi'e, GUO Qiuping, HUANG Ruilin, CHEN Jiashun. Research Progress on Precise Nutrition Supply Technology and Intelligent Farming Equipment for Growing-Finishing Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 501-512. |
[4] | ZHOU Xianshan, HUANG Shihui, NIU Xi, RAN Xueqin, WANG Jiafu. Differential Expression Study of Structural Variation in the Ubiquitin Ligase 2 Gene of Xiang Pigs with Wrinkled Skin [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 136-146. |
[5] | Yingguang LÜ, Guangming JIAO, Jinfang SANG, Zhipeng KOU, Tao LIU, Yue WANG, Xiangyu LU, Chenxi PIAO, Yajun MA, Jiantao ZHANG, Hongbin WANG. The Effect of Adipose Mesenchymal Stem Cells on the Healing Process of Autologous Skin Transplantation in Bama Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3193-3204. |
[6] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[7] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[8] | CHENG Xinyan, WANG Shiyuan, JI Yebiao, HUANG Sixiu, YANG Jie, MENG Fanming, ZHANG Mao, CAI Gengyuan, LIU Langqing. Evaluation of the Genetic Structure of Conservation Populations of Four Major Local Pig Breeds in Guangdong Province Based on a 50K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5464-5477. |
[9] | Yuwei REN, Feng WANG, Ruiping SUN, Yan ZHANG, Hailong LIU, Yanning LIN, Lingling HONG, Xiaoxian HUANG, Zhe CHAO. Effect of Structural Variation of MYH Gene Family on Longissimus Dorsi Muscle Fiber of Wuzhishan Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4912-4924. |
[10] | Congying YU, Jinhua WU, Bingzhou ZHONG, Haiquan ZHAO, Shuwen TAN, Hui YU, Hua LI. Analysis of Whole Transcriptome Characteristics of the Hermaphroditic Pig's Pituitary Gland [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4925-4937. |
[11] | Changying LI, Lanmeng XU, Yuzhi HUANG, Hang HE, Kun WAN, Yancong YUAN, Jie ZHANG. Effect of Feeding Regimes on Growth, Serum Biochemistry, Gut Microbiota and Their Metabolites of Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5147-5158. |
[12] | NIU Naiqi, ZHAO Runze, ZONG Wencheng, LIU Xiance, LIU Hai, SHI Guohua, JING Xitao, ZHANG Longchao. Association of Polymorphisms of GREB1L and MIB1 Genes with Rib Number and Carcass Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 79-86. |
[13] | ZHU Xueli, ZHANG Longchao, WANG Lixian, PU Lei, LIU Xin. Association Analysis of AQP9 and RPS10 Gene Polymorphisms with Backfat Thickness in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 87-98. |
[14] | SHI Shengjie, WANG Liguang, GAO Lei, CAI Chuanjiang, HE Weixian, CHU Guiyan. Effect of miR-24-3p on Estradiol Synthesis in Porcine Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 169-178. |
[15] | CHEN Ying, ZHONG Ruqing, CHEN Liang, ZHANG Hongfu. Utilization of Dietary Fiber and Its Impact on Nutrient Digestion of Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3745-3757. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||