Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 5183-5190.doi: 10.11843/j.issn.0366-6964.2024.11.033
• Preventive Veterinary Medicine • Previous Articles Next Articles
Nana PENG(), Huimin NING, Yuhao CHEN, Xinying LI, Fuqiang ZHU, Guobin YU, Wei DONG*(
)
Received:
2023-12-22
Online:
2024-11-23
Published:
2024-11-30
Contact:
Wei DONG
E-mail:1625989715@qq.com;dongwei@hunau.edu.cn
CLC Number:
Nana PENG, Huimin NING, Yuhao CHEN, Xinying LI, Fuqiang ZHU, Guobin YU, Wei DONG. Competitive Blocking Effect of Salmonella Enteritis Fimbriae Recombinant Protein on Its Cell Adhesion[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5183-5190.
Fig. 1
PCR amplification of FimA-sefA gene and identification of pET28a-FimA-sefA recombinant plasmid A. FimA-sefA amplification (1, 2. Amplified fragment of FimA-sefA; M. DL5000 DNA marker); B. pET28a-FimA-sefA digestion (1. Digestion of pET28a-FimA-sefA recombinant plasmid; 2. Empty vector pET28a (+); M. DL5000 DNA marker)"
Fig. 2
Expression of target protein FimA-sefA(A), Western blot identification(B) and effect of different time on the expression of protein(C) A. Expression of target protein FimA-sefA (1. Induced total protein expression; 2. Induced expression precipitation; 3. Induced expression of supernatant; 4. Total protein of negative control; 5. Negative control precipitation; 6. Negative control supernatant; M. Protein marker); B. Western blot identification (1. FimA-sefA protein; M. Protein marker); C. Effect of different time on the expression of protein (1. Whole strain; 2-6. Time is induced under 8, 12, 16, 20, 24 h, IPTG concentration 1.0 mmol ·L-1, temperature 30 ℃; M. Protein marker)"
1 |
KNODLER L A , ELFENBEIN J R . Salmonella enterica[J]. Trends Microbiol, 2019, 27 (11): 964- 965.
doi: 10.1016/j.tim.2019.05.002 |
2 |
郑琳, 魏炳栋, 滑峰, 等. 裂解性噬菌体对肉仔鸡感染肠炎沙门菌的治疗效果[J]. 畜牧兽医学报, 2024, 55 (3): 1314- 1327.
doi: 10.11843/j.issn.0366-6964.2024.03.042 |
ZHENG L , WEI B D , HUA F , et al. Therapeutic effect of lytic phage on Salmonella enteritidis infection in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1314- 1327.
doi: 10.11843/j.issn.0366-6964.2024.03.042 |
|
3 |
STILZ C R , CAVALLO S , GARMAN K , et al. Salmonella enteritidis outbreaks associated with egg-producing farms not regulated by food and drug administration's egg safety rule[J]. Foodborne Pathog Dis, 2022, 19 (8): 529- 534.
doi: 10.1089/fpd.2022.0025 |
4 |
BEN SALEM R , ABBASSI M S , GARCÍA V , et al. Antimicrobial drug resistance and genetic properties of Salmonella enterica serotype Enteritidis circulating in chicken farms in Tunisia[J]. J Infect Public Health, 2017, 10 (6): 855- 860.
doi: 10.1016/j.jiph.2017.01.012 |
5 |
OBE T , NANNAPANENI R , SCHILLING W , et al. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures[J]. Poult Sci, 2020, 99 (9): 4539- 4548.
doi: 10.1016/j.psj.2020.05.043 |
6 |
张旭梅, 魏玉荣, 许丞惠, 等. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54 (8): 3557- 3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
ZHANG X M , WEI Y R , XU C H , et al. To analyze the mechanism of berberine in the treatment of Salmonella gallinarum infection based on network pharmacology and experimental verification[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3557- 3570.
doi: 10.11843/j.issn.0366-6964.2023.08.039 |
|
7 |
TOWNSEND S M , KRAMER N E , EDWARDS R , et al. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences[J]. Infect Immun, 2001, 69 (5): 2894- 2901.
doi: 10.1128/IAI.69.5.2894-2901.2001 |
8 |
BODDICKER J D , LEDEBOER N A , JAGNOW J , et al. Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster[J]. Mol Microbiol, 2002, 45 (5): 1255- 1265.
doi: 10.1046/j.1365-2958.2002.03121.x |
9 |
HUMPHRIES A D , RAFFATELLU M , WINTER S , et al. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons[J]. Mol Microbiol, 2003, 48 (5): 1357- 1376.
doi: 10.1046/j.1365-2958.2003.03507.x |
10 |
QUAN G M , XIA P P , ZHAO J , et al. Fimbriae and related receptors for Salmonella Enteritidis[J]. Microb Pathog, 2019, 126, 357- 362.
doi: 10.1016/j.micpath.2018.10.025 |
11 | ZHU C H , WU J , CHEN W W , et al. Difference and variation of the sef14 operon gene clusters in S. pullorum[J]. J Basic Microbiol, 2010, 50 Suppl 1, S120- S123. |
12 |
LI W Z , WATARAI S , KODAMA H . Identification of glycosphingolipid binding sites for SEF21-fimbriated Salmonella enterica serovar Enteritidis in chicken oviductal mucosa[J]. Vet Microbiol, 2003, 93 (1): 73- 78.
doi: 10.1016/S0378-1135(02)00441-8 |
13 |
CROWE S J , GREEN A , HERNANDEZ K , et al. Utility of combining whole genome sequencing with traditional investigational methods to solve foodborne outbreaks of salmonella infections associated with chicken: a new tool for tackling this challenging food vehicle[J]. J Food Prot, 2017, 80 (4): 654- 660.
doi: 10.4315/0362-028X.JFP-16-364 |
14 |
ARISAWA T , NAKAMURA M , OTSUKA T , et al. Genetic polymorphisms of MAFK, encoding a small Maf protein, are associated with susceptibility to ulcerative colitis in Japan[J]. World J Gastroenterol, 2017, 23 (29): 5364- 5370.
doi: 10.3748/wjg.v23.i29.5364 |
15 |
CAI L L , XIE Y T , SHAO L T , et al. SaaS sRNA promotes Salmonella intestinal invasion via modulating MAPK inflammatory pathway[J]. Gut Microbes, 2023, 15 (1): 2211184.
doi: 10.1080/19490976.2023.2211184 |
16 |
CAI L L , XIE Y T , HU H J , et al. A Small RNA, SaaS, promotes Salmonella pathogenicity by regulating invasion, intracellular growth, and virulence factors[J]. Microbiol Spectr, 2023, 11 (1): e0293822.
doi: 10.1128/spectrum.02938-22 |
17 |
MENG X , MENG X C , WANG J Q , et al. Small non-coding RNA STnc640 regulates expression of fimA fimbrial gene and virulence of Salmonella enterica serovar Enteritidis[J]. BMC Vet Res, 2019, 15 (1): 319.
doi: 10.1186/s12917-019-2066-7 |
18 | 张成栋. Ⅰ型菌毛介导鼠伤寒沙门氏菌对小鼠的毒力及对抗原递呈细胞侵袭力的研究[D]. 武汉: 华中农业大学, 2009. |
ZHANG C D. Type 1 fimbriae of Salmonella typhimurium mediate bacterial virulence and invasion to antigen presenting cells in mice[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) | |
19 |
GONG J S , ZHUANG L L , ZHU C H , et al. Loop-mediated isothermal amplification of the sefA gene for rapid detection of Salmonella enteritidis and salmonella Gallinarum in chickens[J]. Foodborne Pathog Dis, 2016, 13 (4): 177- 181.
doi: 10.1089/fpd.2015.2082 |
20 |
JONES B D , GHORI N , FALKOW S . Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches[J]. J Exp Med, 1994, 180 (1): 15- 23.
doi: 10.1084/jem.180.1.15 |
21 |
THORNS C J , TURCOTTE C , GEMMELL C G , et al. Studies into the role of the SEF14 fimbrial antigen in the pathogenesis of Salmonella enteritidis[J]. Microb Pathog, 1996, 20 (4): 235- 246.
doi: 10.1006/mpat.1996.0022 |
22 |
BESSER J M . Salmonella epidemiology: a whirlwind of change[J]. Food Microbiol, 2018, 71, 55- 59.
doi: 10.1016/j.fm.2017.08.018 |
23 |
QIU Q H , DEWEY-MATTIA D , SUBRAMHANYA S , et al. Food recalls associated with foodborne disease outbreaks, United States, 2006-2016[J]. Epidemiol Infect, 2021, 149, e190.
doi: 10.1017/S0950268821001722 |
24 |
FADLALLAH S M , SHEHAB M , CHEAITO K , et al. PulseNet lebanon: an overview of its activities, outbreak investigations, and challenges[J]. Foodborne Pathog Dis, 2019, 16 (7): 498- 503.
doi: 10.1089/fpd.2018.2581 |
25 |
EL-SAADONY M T , SALEM H M , EL-TAHAN A M , et al. The control of poultry salmonellosis using organic agents: an updated overview[J]. Poult Sci, 2022, 101 (4): 101716.
doi: 10.1016/j.psj.2022.101716 |
26 | XU D S , JI L , YAN W , et al. Characterization of clinical Salmonella entericas Trains in Huzhou, China[J]. Can J Infect Dis Med Microbiol, 2022, 2022, 7280376. |
27 |
ZHOU X J , XU L , XU X B , et al. Antimicrobial resistance and molecular characterization of Salmonella enterica serovar enteritidis from retail chicken products in Shanghai, China[J]. Foodborne Pathog Dis, 2018, 15 (6): 346- 352.
doi: 10.1089/fpd.2017.2387 |
28 | 侯千禧, 顾宣强, 刘家奇, 等. 肠炎沙门氏菌SEF14菌毛的表达及其对该菌的特异性检测研究[J]. 中国预防兽医学报, 2022, 44 (1): 91- 95. |
HOU Q X , GU X Q , LIU J Q , et al. Expression of SEF14 fimbriae protein and research on specific diagnostic technology of Salmonella enteritidis[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (1): 91- 95. |
[1] | Zhentao XIA, Nan WANG, Wanjie WANG, Qilü ZHOU, Lei HUANG, Yulian MU. Characteristics Analysis of TGEV Infection Mediated by IPEC-J2 with Knockout of pAPN Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3395-3407. |
[2] | REN Lixin, ZHANG Jingyi, XU Shasha, YANG Liu, ZHANG Xingcui, SONG Zhenhui. Effect of ACE2 on Porcine Intestinal Epithelial Cells Infected with Porcine Epidemic Diarrhea Virus in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1238-1248. |
[3] | Menglei CAI, Dongxu ZHAO, Zhenggang ZHANG, Donghai LIU, Tingting JIANG, Shixuan SU, Xuemin YAN, Xiaoyang XUE, Guolin CUI. The Effect of GreA Protein on the Biological Characteristics and Pathogenicity of Salmonella Enteritidis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5173-5182. |
[4] | WANG Jun, LI Jun, CUI Guolin. The Effect of R91S Mutation in FliC on the Flagellar Shape and Salmonella Enteritidis Colonization in BALB/c Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 607-617. |
[5] | JIA Hongmin, MA Yonghang, HE Pingli, QIAO Shiyan. Effects of Excessive Lysine on Weaned Piglets and Their Intestinal Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1912-1926. |
[6] | LI Meidi, ZHAO Zengjue, LIU Hanqing, FU Jiali, ZHANG Linghua, WU Li. Porcine Cysteine-rich Intestinal Protein 2 Involved in the Gut Immune: Three-dimensional Modeling, Molecular Characterization and Tissue Distribution of mRNA Expression [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3194-3207. |
[7] | WANG Yimeng, LIU Xuejiao, WANG Qian, WEI Qing, DOU Caixia, SHANG Zhiyuan, QIAO Jiayun, LI Haihua. Molecular Mechanism of the Injury of IPEC-J2 Caused by Salmonella via NF-κB/β-catenin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 235-245. |
[8] | WANG Zhongqing, LIN Chunfa, ZHONG Wenjie, LUO Yichen, ZHU Zhaorong, LIU Juan. Effect of Zhu Qin Extractive Fluid on the Proliferation and Transcription of Inflammatory Factors in LPS-injured IPEC-J2 Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(7): 1500-1508. |
[9] | WANG Xiaopeng, XU Kui, WEI Yinghui, ZHANG Xiuling, LIU Shasha, QIU Yiqing, LIU Ying, ZHAO Haiquan, MU Yulian, LI Kui. Establishment of CD13 Gene Knockout IPEC-J2 Cell Lines Mediated by CRISPR/Cas9 System [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(7): 1319-1327. |
[10] | PENG Chenglu, ZHANG Yu, DING Xuedong, LI Yu, FENG Shibin, WANG Xichun, LI Jinchun, WU Jinjie. 7S β-conglycinin Triggered Inflammatory Response in IPEC-J2 Cells through NF-κB Signaling Pathway [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(4): 870-878. |
[11] | CHEN Xin-yao, ZHANG Jian-long, DONG Xing, CHEN Jing-jie, HUANG Yi-fan, LI Jian. Effects of Hericium Erinaceus Polysaccharide on Antioxidant Ability and ZO-1 Expression in IPEC-J2 Cells under Oxidative Stress [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(9): 1769-1776. |
[12] | CHEN De-long, ZHU Hong-liang, XU Guang-yong, WANG Ming, JIANG Jin-qi, QIAO Yu, REN Xiao-ming. Study of Lactobacillus Influence the FAK Phosphorylation and Tight Junction Protein Occludin Expression of IPEC-J2 Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(2): 283-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||