Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3947-3956.doi: 10.11843/j.issn.0366-6964.2024.09.019
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
古丽米热·阿布都热依木1,2,3(), Xinru ZHANG1,2,3, Yangsheng WU1,2,3, Ying CHEN1,2,3, Liqin WANG1,2,3, Xinming XU1,2,3, Juncheng HUANG1,2,3,*(), Jiapeng LIN1,2,3,*()
Received:
2024-02-27
Online:
2024-09-23
Published:
2024-09-27
Contact:
Juncheng HUANG, Jiapeng LIN
E-mail:gulimire127@163.com;h_jc@sina.com;linjiapeng5188@163.com
CLC Number:
古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956.
Table 1
si-FKBP5 sequence"
si-RNA名称 si-RNA name | 引物序列(5′→3′) Primers sequence |
si-NC | S:UUCUCCGAACGUGUCACGUTT AS:CGUGACACGUUCGGAGAATT |
si-416 | S:GUCCAUUACAGAGGGAAAUTT AS:AUUUCCCUCUGUAAUGGACTT |
si-1023 | S:GGGAGAUGGAUACCAAAGATT AS:UCUUUGGUAUCCAUCUCCCTT |
si-1523 | S:GAGGCCAGUAAAGCAAUGATT AS:UCAUUGCUUUACUGGCCUCTT |
Fig. 3
LH regulates the expression of FKBP5 in sheep ovarian GCs A. The mRNA level of FKBP5 in GCs after treatment with different LH concentrations for 4 h; B. Protein expression of FKBP5 in GCs after treatment with different LH concentrations for 4 h; C. The mRNA level of FKBP5 in GCs at different times after LH (5 IU·mL-1) treatment; D. Protein expression of FKBP5 in GCs at different times after LH (5 IU·mL-1) treatment; E. Effects of interfering with FKBP5 and adding LH on FKBP5 mRNA level; F. Effects of interfering with FKBP5 and adding LH on FKBP5 protein expression. Compared to GC+si-NC, *P < 0.05, **P < 0.01, ***P < 0.001; Compared to GC+si-FKBP5, #P < 0.05, ##P < 0.01, ###P < 0.001, the same as below"
Fig. 4
Effects of FKBP5 on proliferation and apoptosis of GCs in sheep in vitro A. EdU method was used to detect the effect of FKBP5 on GCs proliferation(Scale 100 μm); B. Detection of PCNA protein level expression and grayscale analysis of protein level; C. TUNEL assay was used to detect the effect of FKBP5 on GCs apoptosis(Scale 100 μm); D. Detection of BAX and Bcl-2 protein expression levels and analysis of protein grayscale values"
1 |
KOSSOWSKA-TOMASZCZUK K , DE GEYTER C , DE GEYTER M , et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J]. Stem cells, 2009, 27 (1): 210- 219.
doi: 10.1634/stemcells.2008-0233 |
2 |
ZHANG C H , LIU X Y , WANG J . Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24 (22): 16247.
doi: 10.3390/ijms242216247 |
3 |
HÄHLE A , MERZ S , MEYNERS C , et al. The many faces of FKBP51[J]. Biomolecules, 2019, 9 (1): 35.
doi: 10.3390/biom9010035 |
4 |
ZIMMER C , JIMENO B , MARTIN L B . HPA flexibility and FKBP5:promising physiological targets for conservation[J]. Philos Trans R Soc Lond B Biol Sci, 2024, 379 (1898): 20220512.
doi: 10.1098/rstb.2022.0512 |
5 | MARRONE L, D'AGOSTINO M, CESARO E, et al. Alternative splicing of FKBP5 gene exerts control over T lymphocyte expansion[J/OL]. J Cell Biochem, 2023. https://doi.org/10.1002/jcb.30364. |
6 | BINDER E B . The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders[J]. Psychoneuroendocrinology, 2009, 34 (S1): S186- S195. |
7 |
SABBAGH J J , CORDOVA R A , ZHENG D L , et al. Targeting the FKBP51/GR/Hsp90 complex to identify functionally relevant treatments for depression and PTSD[J]. ACS Chem Biol, 2018, 13 (8): 2288- 2299.
doi: 10.1021/acschembio.8b00454 |
8 |
WANG L S , WOJCIESZAK J , KUMAR R , et al. FKBP51-Hsp90 interaction-deficient mice exhibit altered endocrine stress response and sex differences under high-fat diet[J]. Mol Neurobiol, 2024, 61 (3): 1479- 1494.
doi: 10.1007/s12035-023-03627-x |
9 |
LI L , LOU Z , WANG L . The role of FKBP5 in cancer aetiology and chemoresistance[J]. Br J Cancer, 2011, 104 (1): 19- 23.
doi: 10.1038/sj.bjc.6606014 |
10 |
PÉREZ-PÉREZ B , CRISTÓBAL-NARVÁEZ P , SHEINBAUM T , et al. Interaction between FKBP5 variability and recent life events in the anxiety spectrum: Evidence for the differential susceptibility model[J]. PLoS One, 2018, 13 (2): e0193044.
doi: 10.1371/journal.pone.0193044 |
11 |
YIN H L , GALFALVY H , PANTAZATOS S P , et al. Glucocorticoid receptor-related genes: genotype and brain gene expression relationships to suicide and major depressive disorder.depress anxiety[J]. Depress Anxiety, 2016, 33 (6): 531- 540.
doi: 10.1002/da.22499 |
12 |
CRIADO-MARRERO M , SMITH T M , GOULD L A , et al. FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism[J]. Brain Behav Immun Health, 2020, 9, 100143.
doi: 10.1016/j.bbih.2020.100143 |
13 |
ZHANG Y , YUE W H , LI J . The association of FKBP5 gene polymorphism with genetic susceptibility to depression and response to antidepressant treatment-a systematic review[J]. BMC Psychiatry, 2024, 24 (1): 274.
doi: 10.1186/s12888-024-05717-z |
14 |
LOU Q Y , LI Z , TENG Y , et al. Associations of FKBP4 and FKBP5 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in systemic lupus erythematosus patients[J]. Clin Rheumatol, 2021, 40 (1): 167- 179.
doi: 10.1007/s10067-020-05195-0 |
15 |
MA X Y , WANG Z , ZHANG C M , et al. Association of SNPs in the FK-506 binding protein (FKBP5) gene among Han Chinese women with polycystic ovary syndrome[J]. BMC Med Genomics, 2022, 15 (1): 149.
doi: 10.1186/s12920-022-01301-0 |
16 |
CHEN F , CHEN Z R , CHEN M J , et al. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients[J]. NPJ Biofilms Microbiomes, 2021, 7 (1): 60.
doi: 10.1038/s41522-021-00231-6 |
17 |
TARRYN W , AMBERLY O , STEPHANIE D , et al. A pilot investigation of genetic and epigenetic variation of FKBP5 and response to exercise intervention in African women with obesity[J]. Sci Rep, 2022, 12 (1): 11771.
doi: 10.1038/s41598-022-15678-6 |
18 |
HÄUSL A S , BALSEVICH G , GASSEN N C , et al. Focus on FKBP51:A molecular link between stress and metabolic disorders[J]. Mol Metab, 2019, 29, 170- 181.
doi: 10.1016/j.molmet.2019.09.003 |
19 |
AGAM G , ATAWNA B , DAMRI O , et al. The role of FKBPs in complex disorders: neuropsychiatric diseases, cancer, and type 2 diabetes mellitus[J]. Cells, 2024, 13 (10): 801.
doi: 10.3390/cells13100801 |
20 |
HU Z G , GE L Y , ZHANG H L , et al. Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight[J]. Anim Biosci, 2022, 35 (1): 1- 12.
doi: 10.5713/ab.20.0649 |
21 |
SUN Y F , LI C J , SUN Y L , et al. Expression of neurotrophin 4 and its receptor tyrosine kinase B in reproductive tissues during the follicular and luteal phases in cows[J]. Asian-Australas J AnimSci, 2011, 24 (3): 336- 343.
doi: 10.5713/ajas.2011.10251 |
22 |
DOS SANTOS E C , BOYER A , ST-JEAN G , et al. Is the hippo pathway effector yes-associated protein a potential key player of dairy cattle cystic ovarian disease pathogenesis?[J]. Animals, 2023, 13 (18): 2851.
doi: 10.3390/ani13182851 |
23 |
ZHU L , JING J , QIN S Q , et al. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. J Integr Agric, 2022, 21 (4): 1137- 1145.
doi: 10.1016/S2095-3119(21)63766-8 |
24 |
CHEN S , GUO X F , HE X Y , et al. Insight into pituitary lncRNA and mRNA at two estrous stages in small tail Han sheep with different FecB genotypes[J]. Front Endocrinol (Lausanne), 2022, 12, 789564.
doi: 10.3389/fendo.2021.789564 |
25 |
WANG C X , ZHAO Y H , YUAN Z Y , et al. Genome-wide identification of mRNAs, lncRNAs, and proteins, and their relationship with sheep fecundity[J]. Front Genet, 2022, 12, 750947.
doi: 10.3389/fgene.2021.750947 |
26 |
SILVA B D M , CASTRO E A , SOUZA C J H , et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J]. Anim Genet, 2011, 42 (1): 89- 92.
doi: 10.1111/j.1365-2052.2010.02078.x |
27 |
JEON H , CHOI Y , BRÄNNSTRÖM M , et al. Cortisol/glucocorticoid receptor: a critical mediator of the ovulatory process and luteinization in human periovulatory follicles[J]. Hum Reprod, 2023, 38 (4): 671- 685.
doi: 10.1093/humrep/dead017 |
28 |
HORI H , YOSHIDA F , ISHIDA I , et al. Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis[J]. J Affect Disord, 2024, 349, 244- 253.
doi: 10.1016/j.jad.2024.01.080 |
29 |
RIZAVI H S , KHAN O S , ZHANG H , et al. Methylation and expression of glucocorticoid receptor exon-1 variants and FKBP5 in teenage suicide-completers[J]. Transl Psychiatry, 2023, 13 (1): 53.
doi: 10.1038/s41398-023-02345-1 |
30 | GUPTA C , CHAPEKAR T , CHHABRA Y , et al. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells[J]. Indian J Med Res, 2012, 135 (3): 331- 340. |
31 |
RICHARDS J S , PANGAS S A . The ovary: basic biology and clinical implications[J]. J Clin Invest, 2010, 120 (4): 963- 972.
doi: 10.1172/JCI41350 |
32 |
MA X F , LIU A J , TIAN S J . A meta-analysis of mRNA expression profiling studies in sheep with different FecB genotypes[J]. Anim Genet, 2023, 54 (3): 225- 238.
doi: 10.1111/age.13304 |
33 |
CAMERON M R , FOSTER J S , BUKOVSKY A , et al. Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5′-monophosphates in porcine granulosa cells[J]. Biol Reprod, 1996, 55 (1): 111- 119.
doi: 10.1095/biolreprod55.1.111 |
34 |
CARVALHO C R O , CARVALHEIRA J B C , LIMA M H M , et al. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways[J]. Endocrinology, 2003, 144 (2): 638- 647.
doi: 10.1210/en.2002-220706 |
35 |
PAN B , ZHAN X S , LI J L . MicroRNA-574 impacts granulosa cell estradiol production via targeting TIMP3 and ERK1/2 signaling pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 852127.
doi: 10.3389/fendo.2022.852127 |
36 |
BADDELA V S , MICHAELIS M , TAO X L , et al. ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition[J]. Life Sci Alliance, 2023, 6 (10): e202302100.
doi: 10.26508/lsa.202302100 |
37 |
SALEHI R , WYSE B A , ASARE-WEREHENE M , et al. Androgen-induced exosomal miR-379-5p release determines granulosa cell fate: cellular mechanism involved in polycystic ovaries[J]. J Ovarian Res, 2023, 16 (1): 74.
doi: 10.1186/s13048-023-01141-1 |
38 | ZHENG X , CHEN L , CHEN T , et al. The mechanisms of BDNF promoting the proliferation of porcine follicular granulosa cells: role of miR-127 and involvement of the MAPK-ERK1/2 pathway[J]. Animals (Basel), 2023, 13 (6): 1115. |
39 |
RUGG M S , WILLIS A C , MUKHOPADHYAY D , et al. Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan[J]. J Biol Chem, 2005, 280 (27): 25674- 25686.
doi: 10.1074/jbc.M501332200 |
40 |
BAO B , GARVERICK H A . Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review[J]. J Anim Sci, 1998, 76 (7): 1903- 1921.
doi: 10.2527/1998.7671903x |
[1] | Haoran SONG, Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Yifan NIU, Zhou YU, Pengcheng WAN, Kai CUI, Xueming ZHAO. The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2313-2324. |
[2] | LÜ Shiqi, ZHOU Rongyan, TIAN Shujun, CHEN Xiaoyong. Study on the Physiological Mechanism of Mitochondrial tRNA-Lys(T7719G) Gene Variation Affecting Apoptosis of Ovine Granulosa Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2011-2021. |
[3] | PIAN Huifang, DU Xubin, LI Yan, ZHANG Yuchen, HE Hui, YU Debing. Effects of Betaine on Performance, Egg Quality and Antioxidant Capacity of Late-phase Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1085-1094. |
[4] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[5] | SHI Shengjie, WANG Liguang, GAO Lei, CAI Chuanjiang, HE Weixian, CHU Guiyan. Effect of miR-24-3p on Estradiol Synthesis in Porcine Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 169-178. |
[6] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[7] | HE Mingyang, MA Yujing, WANG Yong, YANG Ruochen, LIU Yueqin, ZHANG Yingjie, DUAN Chunhui. Effects of Melatonin on Proliferation, Apoptosis of Ovarian Granulosa Cells, and Its Secretion of Steroid Hormones of Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3313-3324. |
[8] | LIU Jie, XU Xiangping, DENG Ming, ZOU Xian, JIANG Shengwei, LIU Dewu, LIU Guangbin, SUN Baoli, GUO Yongqing, LI Yaokun. Effect of miR-144-5p Targeting WNT5a on the Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2421-2435. |
[9] | HU Yamei, SONG Xiangrong, HUANG Liang, ZHANG Lutong, GAO Lei, PANG Weijun, YANG Gongshe, CHU Guiyan. FGF21 Enhances Mitochondrial Function and Inhibits Apoptosis of Porcine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1034-1045. |
[10] | MENG Zhaoyi, WANG Yunlu, XU Yefen, NIU Jiaqiang, SUOLANG Sizhu, GUO Min, XI Guangyin. Construction of Yak lncRNA ENSBGRT00000000387.1 Lentivirus Vector and Its Effect on Apoptosis of Yak Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1058-1070. |
[11] | SONG Pengyan, WANG Siwei, YUE Qiaoxian, ZHANG Yinliang, CHEN Xiaoyong, ZHOU Rongyan. Identification of oar-miR-200b Promoter and Effects on Mitochondrial Function in Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5066-5076. |
[12] | WEI Jiayuan, ZHU Qian, YANG Yaxing, SHEN Ming. Inhibition of Porcine Follicular Granulosa Cell Proliferation by Cobalt Chloride Induced DNA Oxidative Damage [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2982-2992. |
[13] | TANG Ziwen, CHENG Huaqin, LIU Dongju, PHAGMO Droma, YANG Xue, LI Jian, YIN Shi. The Protective Effect of Proanthocyanidins on Oxidative Damage of Yak Granulosa Cells Induced by Zearalenone [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3006-3017. |
[14] | WANG Lei, HE Lina, TANG Xue, LI Bijun, HUANG Siyi, WANG Yukun, XU Dejun, ZHAO Zhongquan. Effects of miR-495-3p on Ovarian Granulosa Cell Functions in Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 436-446. |
[15] | FU Qiang, YUE Qiaoxian, XI Jianzhong, SONG Pengyan, CHEN Xiaoyong, ZHOU Rongyan. Effect of Oar-miR-127/FOXO4 Feedback Loop on Genes Associated with Apoptosis of Sheep Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||