[1]BUSHATI N, COHEN S M. microRNA functions [J]. Annu Rev Cell Dev Biol, 2007, 23: 175-205. [2]AMBROS V. The functions of animal microRNAs [J]. Nature, 2004, 431(7006): 350-355. [3]LYNAM-LENNON N, MAHER S G, REYNOLDS J V. The roles of microRNA in cancer and apoptosis [J].Biol Rev Camb Philos Soc, 2009, 84(1): 55-71. [4]WANG Y, STRICKER H M, GOU D, et al. MicroRNA: past and present [J]. Front Biosci, 2007, 12: 2316-2329. [5]VAN ROOIJ E. The art of microRNA research [J]. Circ Res, 2011, 108(2): 219-234. [6]LI W, RUAN K. MicroRNA detection by microarray [J]. Anal Bioanal Chem, 2009, 394(4): 1117-1124. [7]BARTEL D P. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233. [8]BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297. [9]LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75(5): 843-854. [10]PASQUINELLI A E, REINHART B J, SLACK F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 2000, 408(6808): 86-89. [11]REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature, 2000, 403(6772): 901-906. [12]LAGOS-QUINTANA M, RAUHUT R, LENDECKEL W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science, 2001, 294(5543): 853-858. [13]LAU N C, LIM L P, WEINSTEIN E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science, 2001, 294(5543): 858-862. [14]LEE R, CAMBROS V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001, 294(5543): 862-864. [15]KOZOMAR A, AGRIFFITHS-JONES S. miRBase: integrating microRNA annotation and deep-sequencing data [J]. Nucleic Acids Res, 2011, 39(Database issue): D152-157. [16]CAI X, HAGEDORN C H, CULLEN B R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J]. RNA, 2004, 10(12): 1957-1966. [17]LEE Y, KIM M, HAN J, et al. MicroRNA genes are transcribed by RNA polymerase II [J]. EMBO J, 2004, 23(20): 4051-4060. [18]BORCHERT G M, LANIER W, DAVIDSON B L. RNA polymerase III transcribes human microRNAs [J].Nat Struct Mol Biol, 2006, 13(12): 1097-1101. [19]LEE Y, AHN C, HAN J, et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature, 2003, 425(6956): 415-419. [20]DENLI A M, TOPS B B, PLASTERK R H, et al. Processing of primary microRNAs by the Microprocessor complex [J]. Nature, 2004, 432(7014): 231-235. [21]GREGORY R I, YAN K P, AMUTHAN G, et al. The Microprocessor complex mediates the genesis of microRNAs [J]. Nature, 2004, 432(7014): 235-240. [22]LUND E, GUTTINGER S, CALADO A, et al. Nuclear export of microRNA precursors [J]. Science, 2004, 303(5654): 95-98. [23]BOHNSACK M T, CZAPLINSKI K, GORLICH D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J]. RNA, 2004, 10(2): 185-191. [24]YI R, QIN Y, MACARA I G, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs [J]. Genes Dev, 2003, 17(24): 3011-3016. [25]GREGORY R I, CHENDRIMADA T P, COOCH N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing [J]. Cell, 2005, 123(4): 631-640. [26]MANIATAKI E, MOURELATOS Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA [J]. Genes Dev, 2005, 19(24): 2979-2990. [27]SCHWARZ D S, HUTVAGNER G, DU T, et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell, 2003, 115(2): 199-208. [28]DU T T, ZAMORE P D. microPrimer: the biogenesis and function of microRNA [J]. Development, 2005, 132(21): 4645-4652. [29]CHELOUFI S, DOS SANTOS C O, CHONG M M, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis [J]. Nature, 2010, 465(7298): 584-589. [30]LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell, 2005, 120(1): 15-20. [31]HUTVAGNER G, ZAMORE P D. A microRNA in a multiple-turnover RNAi enzyme complex [J]. Science, 2002, 297(5589): 2056-2060. [32]MARTINEZ J, TUSCHL T. RISC is a 5′ phosphomonoester-producing RNA endonuclease [J]. Genes Dev, 2004, 18(9): 975-980. [33]WU L, FAN J, BELASCO J G. MicroRNAs direct rapid deadenylation of mRNA [J]. Proc Natl Acad Sci U S A, 2006, 103(11): 4034-4039. [34]CARRINGTON J, CAMBROS V. Role of microRNAs in plant and animal development [J]. Science, 2003, 301(5631): 336-338. [35]MEISTER G, LANDTHALER M, PATKANIOWSKA A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs [J]. Mol Cell, 2004, 15(2): 185-197. [36]OKAMURA K, ISHIZUKA A, SIOMI H, et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways [J]. Genes Dev, 2004, 18(14): 1655-1666. [37]LIU J, CARMELL M A, RIVAS F V, et al. Argonaute2 is the catalytic engine of mammalian RNAi [J]. Science, 2004, 305(5689): 1437-1441. [38]HUMPHREYS D T, WESTMAN B J, MARTIN D I, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function [J]. Proc Natl Acad Sci U S A, 2005, 102(47): 16961-16966. [39]MARONEY P A, YU Y, FISHER J, et al. Evidence that microRNAs are associated with translating messenger RNAs in human cells [J]. Nat Struct Mol Biol, 2006, 13(12): 1102-1107. [40]NOTTROTT S, SIMARD M J, RICHTER J D. Human let-7a miRNA blocks protein production on actively translating polyribosomes [J]. Nat Struct Mol Biol, 2006, 13(12): 1108-1114. [41]PETERSEN C P, BORDELEAU M E, PELLETIER J, et al. Short RNAs repress translation after initiation in mammalian cells [J]. Mol Cell, 2006, 21(4): 533-542. [42]PILLAI R S, BHATTACHARYYA S N, ARTUS C G, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells [J]. Science, 2005, 309(5740): 1573-1576. [43]YEKTA S, SHIH I H, BARTEL D P. MicroRNA-directed cleavage of HOXB8 mRNA [J]. Science, 2004, 304(5670): 594-596. [44]SCHANEN B C A X L. Transcriptional regulation of mammalian miRNA genes [J]. Genomics, 2011, 97(1): 1-6. [45]LIM L P, GLASNER M E, YEKTA S, et al. Vertebrate microRNA genes [J]. Science, 2003, 299(5612): 1540. [46]LIM L P, LAU N C, WEINSTEIN E G, et al. The microRNAs of Caenorhabditis elegans [J]. Genes Dev, 2003, 17(8): 991-1008. [47]LAI E C, TOMANCAK P, WILLIAMS R W, et al. Computational identification of Drosophila microRNA genes [J]. Genome Biol, 2003, 4(7): R42. [48]GRAD Y, AACH J, HAYES G D, et al. Computational and experimental identification of C. elegans microRNAs [J]. Mol Cell, 2003, 11(5): 1253-1263. [49]WANG X, ZHANG J, LI F, et al. MicroRNA identification based on sequence and structure alignment [J]. Bioinformatics, 2005, 21(18): 3610-3614. [50]NAM J W, KIM J, KIM S K, et al. ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs [J]. Nucleic Acids Res, 2006, 34(Web Server issue): W455-458. [51]NAM J W, SHIN K R, HAN J, et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure [J]. Nucleic Acids Res, 2005, 33(11): 3570-3581. [52]WERNERSSON R, SCHIERUP M H, JORGENSEN F G, et al. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing [J]. BMC Genomics, 2005, 6: 70. [53]KIM H J, CUI X S, KIM E J, et al. New porcine microRNA genes found by homology search [J]. Genome, 2006, 49(10): 1283-1286. [54]KIM J, CHO I S, HONG J S, et al. Identification and characterization of new microRNAs from pig [J]. Mamm Genome, 2008, 19(7-8): 570-580. [55]SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467. [56]International human genome sequencing consortium. Finishing the euchromatic sequence of the human genome [J]. Nature, 2004, 431(7011): 931-945. [57]MARGULIES M, EGHOLM M, ALTMAN W E, et al. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature, 2005, 437(7057): 376-380. [58]MARDIS E R. Next-generation DNA sequencing methods [J]. Annu Rev Genomics Hum Genet, 2008, 9: 387-402. [59]WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nat Rev Genet, 2009, 10(1): 57-63. [60]PAREEK C S, SMOCZYNSKI R, TRETYN A. Sequencing technologies and genome sequencing [J]. J Appl Genet, 2011, 52(4): 413-435. [61]METZKER M L. Sequencing technologies- the next generation [J]. Nat Rev Genet, 2010, 11(1): 31-46. [62]BIRZELE F, SCHAUB J, RUST W, et al. Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing [J]. Nucleic Acids Res, 2010, 38(12): 3999-4010. [63]SCHADT E E, TURNER S, KASARSKIS A. A window into third-generation sequencing [J]. Hum Mol Genet, 2010, 19(R2): R227-240. [64]LU C, TEJ S S, LUO S, et al. Elucidation of the small RNA component of the transcriptome [J]. Science, 2005, 309(5740): 1567-1569. [65]RUBY J G, JAN C, PLAYER C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans [J]. Cell, 2006, 127(6): 1193-1207. [66]REDDY A M, ZHENG Y, JAGADEESWARAN G, et al. Cloning, characterization and expression analysis of porcine microRNAs [J]. BMC Genomics, 2009, 10: 65. [67]NIELSEN M, HANSEN J H, HEDEGAARD J, et al. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing [J]. Anim Genet, 2010, 41(2): 159-168. [68]SHARBATI S, FRIEDLANDER M R, SHARBATI J, et al. Deciphering the porcine intestinal microRNA transcriptome [J]. BMC Genomics, 2010, 11: 275. [69]LI M, XIA Y, GU Y, et al. MicroRNAome of porcine pre- and postnatal development [J]. PLoS ONE, 2010, 5(7): e11541. [70]LI M, LIU Y, WANG T, et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing [J]. Int J Biol Sci, 2011, 7(7): 1045-1055. [71]XIE S S, LI X Y, LIU T, et al. Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach [J]. PLoS ONE, 2011, 6(1): e16235. [72]CHEN C, AI H, REN J, et al. A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing [J]. BMC Genomics, 2011, 12: 448. [73]LI G X, LI Y J, LI X J, et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing [J]. J Cell Biochem, 2011, 112(5): 1318-1328. [74]LIAN C, SUN B, NIU S, et al. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing [J]. FEBS J, 2012, 279(6): 964-975. [75]LI H, XI Q, XIONG Y, et al. A comprehensive expression profile of microRNAs in porcine pituitary [J]. PLoS ONE, 2011, 6(9): e24883. [76]DAI C, ZHANG Y M, ZHANG Q, et al. A microRNA catalog of swine umbilical vein endothelial cells identified by deep sequencing [J]. Agric Sci Chn, 2011, 10(9): 1467-1474. [77]CHEN C, DENG B, QIAO M, et al. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs [J]. PLoS ONE, 2012, 7(2): e31426. [78]WU Y Q, CHEN D J, HE H B, et al. Pseudorabies virus infected porcine epithelial cell line generates a diverse set of host microRNAs and a special cluster of viral microRNAs [J]. PLoS ONE, 2012, 7(1): e30988. [79]HOU X, TANG Z, LIU H, et al. Discovery of microRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs [J]. PLoS ONE, 7(12): e52123. [80]CHEN J H, WEI W J, XIAO X, et al. Expression analysis of rniRNAs in porcine fetal skeletal muscle on days 65 and 90 of gestation [J]. Asian-Austra J Anim Sci, 2008, 21(7): 954-960. [81]HUANG T H, ZHU M J, LI X Y, et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development [J]. PLoS ONE, 2008, 3(9): e3225. [82]SU L, ZHAO S, ZHU M, et al. Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation [J]. Reprod Fertil Dev, 2010, 22(8): 1175-1182. [83]LUO L, YE L, LIU G, et al. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes [J]. PLoS ONE, 2010, 5(8): e11744. [84]ZHOU B, LIU H L, SHI F X, et al. MicroRNA expression profiles of porcine skeletal muscle [J]. Anim Genet, 2010, 41(5): 499-508. [85]CURRY E, ELLIS S E, PRATT S L. Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction [J]. Mol Reprod Dev, 2009, 76(3): 218-219. [86]PODOLSKA A, KACZKOWSKI B, KAMP BUSK P, et al. MicroRNA expression profiling of the porcine developing brain [J]. PLoS ONE, 2011, 6(1): e14494. [87]KIM H J, CUI X S, KIM E J, et al. New porcine microRNA genes found by homology search [J]. Genome, 2006, 49(10): 1283-1286. [88]SHARBATI-TEHRANI S, KUTZ-LOHROFF B, SCHOLVEN J, et al. Concatameric cloning of porcine microRNA molecules after assembly PCR [J]. Biochem Biophys Res Commun, 2008, 375(3): 484-489. [89]MCDANELD T G, SMITH T P, DOUMIT M E, et al. MicroRNA transcriptome profiles during swine skeletal muscle development [J]. BMC Genomics, 2009, 10: 77. [90]XIE S S, HUANG T H, SHEN Y, et al. Identification and characterization of microRNAs from porcine skeletal muscle [J]. Anim Genet, 2009, 41(2): 179-190. [91]CHO I S, KIM J, SEO H Y, et al. Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue [J]. Mol Biol Rep, 2010, 37(7): 3567-3574. |