| [1] | YU K H, LEE C I. Quercetin disaggregates prion fibrils and decreases fibril-induced cytotoxicity and oxidative stress[J]. Pharmaceutics, 2020, 12(11):1081. | 
																													
																							| [2] | NASR S H, DASARI S, MILLS J R, et al. Hereditary lysozyme amyloidosis variant p. Leu102Ser associates with unique phenotype[J]. J Am Soc Nephrol, 2017, 28(2):431-438. | 
																													
																							| [3] | HE L, WANG X S, ZHU D S, et al. Methionine oxidation of amyloid peptides by peroxovanadium complexes:inhibition of fibril formation through a distinct mechanism[J]. Metallomics, 2015, 7(12):1562-1572. | 
																													
																							| [4] | DE FELICE F G, VIEIRA M N N, MEIRELLES M N L, et al. Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure[J]. FASEB J, 2004, 18(10):1099-1101. | 
																													
																							| [5] | KREBS M R H, WILKINS D K, CHUNG E W, et al. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain[J]. J Mol Biol, 2000, 300(3):541-549. | 
																													
																							| [6] | SIVALINGAM V, PRASANNA N L, SHARMA N, et al. Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants[J]. Biophys Chem, 2016, 219:28-37. | 
																													
																							| [7] | FENG Z L, LI Y, BAI Y. Elevated temperatures accelerate the formation of toxic amyloid fibrils of hen egg-white lysozyme[J]. Vet Med Sci, 2021, 7(5):1938-1947. | 
																													
																							| [8] | WANG L Q, ZHAO K, YUAN H Y, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein[J]. Nat Struct Mol Biol, 2020, 27(6):598-602. | 
																													
																							| [9] | NORLIN N, HELLBERG M, FILIPPOV A, et al. Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM[J]. J Struct Biol, 2012, 180(1):174-189. | 
																													
																							| [10] | SETHURAMAN A, BELFORT G. Protein structural perturbation and aggregation on homogeneous surfaces[J]. Biophys J, 2005, 88(2):1322-1333. | 
																													
																							| [11] | OW S Y, DUNSTAN D E. The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation[J]. Soft Matter, 2013, 9(40):9692-9701. | 
																													
																							| [12] | MAHDAVIMEHR M, MERATAN A A, GHOBEH M, et al. Inhibition of HEWL fibril formation by taxifolin:Mechanism of action[J]. PLoS One, 2017, 12(11):e0187841. | 
																													
																							| [13] | PAN K M, BALDWIN M, NGUYEN J, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins[J]. Proc Natl Acad Sci U S A, 1993, 90(23):10962-10966. | 
																													
																							| [14] | YAMAGUCHI K I, KUWATA K. Formation and properties of amyloid fibrils of prion protein[J]. Biophys Rev, 2018, 10(2):517-525. | 
																													
																							| [15] | MARIÑO L, PAUWELS K, CASASNOVAS R, et al. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis[J]. Sci Rep, 2015, 5:12052. | 
																													
																							| [16] | 李 颖, 冯自立, 白 瑜, 等. 蛋清溶菌酶的改造及其抑菌活性[J]. 畜牧兽医学报, 2021, 52(4):1094-1102.LI Y, FENG Z L, BAI Y, et al. The modification of hen egg-white lysozyme and its antibacterial activity[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):1094-1102. (in Chinese) | 
																													
																							| [17] | SHARMA P, VERMA N, SINGH P K, et al. Characterization of heat induced spherulites of lysozyme reveals new insight on amyloid initiation[J]. Sci Rep, 2016, 6:22475. | 
																													
																							| [18] | GLYNN C, SAWAYA M R, GE P, et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core[J]. Nat Struct Mol Biol, 2020, 27(5):417-423. | 
																													
																							| [19] | GREMER L, SCHÖLZEL D, SCHENK C, et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy[J]. Science, 2017, 358(6359):116-119. | 
																													
																							| [20] | SWAMINATHAN R, RAVI V K, KUMAR S, et al. Lysozyme:a model protein for amyloid research[J]. Adv Protein Chem Struct Biol, 2011, 84:63-111. | 
																													
																							| [21] | SERAJ Z, GROVES M R, SEYEDARABI A. Cinnamaldehyde and Phenyl Ethyl Alcohol promote the entrapment of intermediate species of HEWL, as revealed by structural, kinetics and thermal stability studies[J]. Sci Rep, 2019, 9(1):18615. | 
																													
																							| [22] | GU W, WANG T T, ZHU J, et al. Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions[J]. Biophys Chem, 2003, 104(1):79-94. | 
																													
																							| [23] | SINGH J, UDGAONKAR J B. Unraveling the molecular mechanism of pH-induced misfolding and oligomerization of the prion protein[J]. J Mol Biol, 2016, 428(6):1345-1355. | 
																													
																							| [24] | YAMAGUCHI K I, KAMATARI Y O, FUKUOKA M, et al. Nearly reversible conformational change of amyloid fibrils as revealed by pH-jump experiments[J]. Biochemistry, 2013, 52(39):6797-6806. | 
																													
																							| [25] | BRUDAR S, HRIBAR-LEE B. The role of buffers in wild-type HEWL amyloid fibril formation mechanism[J]. Biomolecules, 2019, 9(2):65. | 
																													
																							| [26] | WANG W, ROBERTS C J. Protein aggregation-Mechanisms, detection, and control[J]. Int J Pharm, 2018, 550(1-2):251-268. | 
																													
																							| [27] | PELLARIN R, CAFLISCH A. Interpreting the aggregation kinetics of amyloid peptides[J]. J Mol Biol, 2006, 360(4):882-892. | 
																													
																							| [28] | CERDÀ-COSTA N, ESTERAS-CHOPO A, AVILÉS F X, et al. Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates[J]. J Mol Biol, 2007, 366(4):1351-1363. |