Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (7): 3057-3070.doi: 10.11843/j.issn.0366-6964.2025.07.002
• Review • Previous Articles Next Articles
ZHANG Yanjun1,*(), ZHANG Jianmin1, YANG Jian1,2,3, ZHOU Shuze1, WU Weiwei1, YU Liang1, GONG Daoqing3,4, MIAO Hong1
Received:
2024-11-18
Online:
2025-07-23
Published:
2025-07-25
Contact:
ZHANG Yanjun
E-mail:zhangyj_204@163.com
CLC Number:
ZHANG Yanjun, ZHANG Jianmin, YANG Jian, ZHOU Shuze, WU Weiwei, YU Liang, GONG Daoqing, MIAO Hong. Progress in the Detection of Body Composition in Livestock Based on Bioelectrical Impedance Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3057-3070.
Table 1
Accuracy of bioelectrical impedance technique in predicting body composition of livestock and poultry"
检测对象 Target of detection | 体成分类型 Body composition type | 样本量 Sample size | 预测模型 Predictive model | R2 | 参考文献 Reference |
特瑟尔×法兰西岛杂交公羊羔 Texel×Ile de France crossbred ram lambs | 冷胴体重量 软组织重量 | 31 | -4.46+0.17V+0.48PA+0.30RsD; -1.86+0.15V+0.13RsD+1.12XcD | 0.970 0.970 | [ |
巴巴多斯黑腹羔羊 Barbados Black Belly lambs | 粗脂肪 粗蛋白 | 34 | -1.53+2.65+L2/Rs-0.65Xc; 101-107Rs-40.9C-8.5Xc+90.2Z+ 153L-197L2/Rs-0.003W | 0.640 0.720 | [ |
特瑟尔×法兰西岛杂交公羊羔 Texel×Ile de France crossbred ram lambs | 软组织 脂肪 | 32 | -0.385 0+12.940RsD+0.538 5V-0.022 9Xc; -1.282 0+3.413 0RsD+0.119 3V | 0.968 0.867 | [ |
德国黑头羊羔 German Black-headed Mutton lambs | 无脂肪软组织 | 24 | 88.340-0.278R0+0.558L | 0.640 | [ |
健康母马 Healthy mares | 体内总水量 | 9 | / | 0.820 | [ |
标准赛马 Standardbred racehorses | 体内总水量 细胞外液容量 血浆容量 | 20 | / | 0.916 0.876 0.676 | [ |
健康成年马 Health adult horses | 体内总水量 血浆容量 细胞外液体积 | 5 | 7.64-12.798性别-0.42年龄-1.977电抗+ 1.08阻抗+0.70电容;4.728-0.846性别-0.054年龄- 0.0899电阻-0.2145电抗+0.132阻抗;90.91-5.68性别-0.763年龄+ 0.535电阻-3.998电抗-0.237电容 | 0.960 0.810 0.830 | [ |
肉牛 Beef cows | 骨骼肌总量 骨骼肌总脂肪 | 33 | / | 0.947 0.912 | [ |
水牛 Buffaloes | 去脂质量 | 20 | -30.59+0.993LW+0.150Xc500 kHz- 0.123Xc1 000 kHz+9.11 | 0.967 | [ |
水牛雄犊 Buffalo male calves | 热胴体重量 | 20 | 98.47-8.84Rs100 kHz+4.41Rs1 000 kHz- 116.27Xc5 kHz+51.04Xc50 kHz+20.30Xc100 kHz- 33.92Xc500 kHz+9.01Xc1 000 kHz±ε | 0.907 | [ |
伊比利亚猪 Iberian pigs | 瘦肉 脂肪 骨质 皮肤 | 12 | / | 0.850 0.960 0.590 0.680 | [ |
猪 Pigs | 去脂质量 | 191 | 0.522A-Wt-0.711Rs+0.388L+ 0.695Xc+3.397 | 0.845 | [ |
文昌土鸡 Wenchang free-range chickens | 脂肪含量 | 30 | -9.176 41+0.053 7x+(-6.001 99E-5)x2 | 0.880 | [ |
肉种鸡母鸡 Broiler breeder hens | 腹部脂肪含量 | 70 | / | 0.908 | [ |
不同品系的肉鸡 Different broiler strains | 水分 蛋白质 脂肪 能量含量 | 528 | / | 0.909 0.825 0.795 0.838 | [ |
1 | 韩丽, 黄兴国, 尹杰. 营养调控对宁乡猪肉品质的影响及其分子机制研究[J]. 畜禽营养学报, 2023, 35 (10): 6164- 6175. |
HAN L , HUANG X G , YIN J . Effects of nutrition regulation on meat quality of Ningxiang pigs and its molecular mechanism[J]. Chinese Journal of Animal Nutrition, 2023, 35 (10): 6164- 6175. | |
2 | 马玉勇, 陈凯, 胡小爱, 等. 不同饲养模式对湘黄母鸡生长性能、屠宰性能及肉品质的影响[J]. 饲料工业, 2023, 44 (21): 47- 51. |
MA Y Y , CHEN K , HU X A , et al. Effects of different feeding modes on growth performance, slaughter performance and meat quality of Hunan yellow hens[J]. Feed Industry, 2023, 44 (21): 47- 51. | |
3 | HUANCA-MARCA N F , ESTEVEZ-MORENO L X , LOSADA-ESPINOSA N , et al. Assessment of pig welfare at slaughterhouse level: A systematic review of animal-based indicators suitable for inclusion in monitoring protocols[J]. Meat Sci, 2024 (220): 109689. |
4 | 盖圣美, 游佳伟, 张雪娇, 等. 利用低场核磁共振及成像技术鉴别注水肉糜[J]. 食品科学, 2020, 41 (22): 289- 294. |
GAI S M , YOU J W , ZHANG X J , et al. Discrimination of water-injected ground meat using low-field nuclear magnetic resonance and magnetic resonance imaging[J]. Food Science, 2020, 41 (22): 289- 294. | |
5 | 刘婕妤, 李晓, 李艳辉, 等. 体成分与高血压相关性及生物电阻抗法与双能X射线吸收法一致性分析[J]. 中国公共卫生, 2023, 39 (2): 225- 232. |
LIU J Y , LI X , LI Y H , et al. Correlation of body composition with hypertension and consistency between dual-energy X-ray absorptiometry and bioelectrical impedance in body composition measurement among community adults: a cross-sectional study[J]. Chinese Journal of Public Health, 2023, 39 (2): 225- 232. | |
6 | 张永立, 杨光辉, 王美蟠, 等. 鲜食玉米果穗含水率近红外光谱无损检测影响因素[J]. 农业工程学报, 2024, 40 (15): 262- 270. |
ZHANG Y L , YANG G H , WANG M P , et al. Factors affecting the non-destructive detection of water contents in fresh corn cobs by near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (15): 262- 270. | |
7 | KIM Y , BEOM J , LEE S Y , et al. Comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry for the diagnosis of sarcopenia in the older adults with metabolic syndrome: equipment-specific equation development[J]. Aging Clin Exp Res, 2025, 37 (1): 1- 9. |
8 | BEAUDART C , BRUYERE O , GEERINCK A , et al. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: a systematic review[J]. Clin Nutr ESPEN, 2020, 35, 47- 62. |
9 | 黄玉萍, 陈桂云, 夏建春, 等. 注水肉无损检测技术现状与发展趋势分析[J]. 农业机械学报, 2015, 46 (1): 207- 215. |
HUANG Y P , CHEN G Y , XIA J C , et al. Status and trends of nondestructive detection technology for water-injected meat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (1): 207- 215. | |
10 | SON J W , HAN B D , BENNETT J P , et al. Development and clinical application of bioelectrical impedance analysis method for body composition assessment[J]. Obes Rev, 2025, 26 (1): e13844. |
11 | 李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42 (6): 18- 26. |
LI B M , WANG Y , ZHENG W C , et al. Research progress on intelligent equipment and information technology for livestock and poultry breeding[J]. Journal of South China Agricultural University, 2021, 42 (6): 18- 26. | |
12 | WANG Y , WANG X , LIU K , et al. Non-invasive monitoring for precision sheep farming: Development, challenges, and future perspectives[J]. Comput Electron Agric, 2025, 231, 110050. |
13 | 肖德琴, 毛远洋, 刘又夫, 等. 我国家禽工厂化养殖技术发展现状与趋势[J]. 华南农业大学学报, 2023, 44 (1): 1-12, 191. |
XIAO D Q , MAO Y Y , LIU Y F , et al. Development and trend of industrialized poultry culture in China[J]. Journal of South China Agricultural University, 2023, 44 (1): 1-12, 191. | |
14 | 潘俊毅, 吴青瑶, 谭碧娥, 等. 生长育肥猪精准营养供给技术及智能化养殖设备研究进展[J]. 畜牧兽医学报, 2025, 56 (2): 501- 512. |
PAN J Y , WU Q Y , TAN B E , et al. Research progress on precise nutrition supply technology and Intelligent farming equipment for Growing-Finishing pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (2): 501- 512. | |
15 | MEHRI M , GHAZAGHI M , ROKOUEI M . A critical perspective on statistical issues in estimating nutrient bioavailability in animal bioassays[J]. J Nutr, 2024 (154): 3544- 3553. |
16 | MANYEUAL F , LEGODIMO M D , MOREKI J C , et al. Soybean replacement value of canola meal as measured by growth performance and feed efficiency in broiler chickens: Insights from a meta-analysis: CANOLA MEAL HAS POOR REPLACEMENT POTENTIAL FOR SOYBEAN IN BROILER DIETS[J]. Poult Sci, 2025, 104 (3): 104876. |
17 | PIBOONKUNSAMLIT S , SUNTRA C , CHERDTHONG A . The latest insights and perspectives on chitosan supplementation driving ruminant feed efficiency and sustainability[J]. Anim Feed Sci Technol, 2025, 323, 116298. |
18 |
杨雪芬, 蒋宗勇. 商品猪精准营养技术研究进展[J]. 动物营养学报, 2022, 34 (10): 6121- 6131.
doi: 10.3969/j.issn.1006-267x.2022.10.001 |
YANG X F , JIANG Z Y . Research progress on precision nutrition technology of commercial pigs[J]. Chinese Journal of Animal Nutrition, 2022, 34 (10): 6121- 6131.
doi: 10.3969/j.issn.1006-267x.2022.10.001 |
|
19 | 陈凯, 张旭, 吴聪, 等. 湘黄鸡生长及体成分沉积规律研究[J]. 动物营养学报, 2024, 36 (11): 7003- 7014. |
CHEN K , ZHANG X , WU C , et al. Study on rule of growth and body composition deposition of Hunan yellow chicken[J]. Chinese Journal of Animal Nutrition, 2024, 36 (11): 7003- 7014. | |
20 | SHEN Y , XU Z , LIU G , et al. Growth trajectory of Yiling sheep and its related genetic parameters[J]. Trop Anim Health Prod, 2025, 57 (2): 43. |
21 | GULER S , ÇAM M , ATIK A . Determination of the effect of the dam age, birth type, and sex on growth curve traits of hair goat kids[J]. Trop Anim Health Prod, 2023, 55 (6): 371. |
22 |
徐小静, 董瑞玲, 魏立民, 等. 文昌鸡母鸡生长模型的研究[J]. 畜牧兽医学报, 2023, 54 (12): 4952- 4961.
doi: 10.11843/j.issn.0366-6964.2023.12.007 |
XU X J , DONG R L , WEI L M , et al. Study on growth model of wenchang chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4952- 4961.
doi: 10.11843/j.issn.0366-6964.2023.12.007 |
|
23 | 贾紫洁, 图格琴, 丁文淇, 等. 蒙古马全身主要骨骼肌表型谱的构建及比较研究[J]. 畜牧兽医学报, 2023, 54 (2): 596- 607. |
JIA Z J , TU G Q , DING W Q , et al. Construction and comparative study of the phenotypic spectrum of the main skeletal muscles throughout the mongolian horse[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 596- 607. | |
24 | 刘雨萌, 马艳艳, 姜海煦, 等. 鸡脂肪组织TCF21基因启动子区DNA甲基化与其表达的关系[J]. 畜牧兽医学报, 2021, 52 (12): 3375- 3389. |
LIU Y M , MA Y Y , JIANG H X , et al. The relationship between promoter region DNA methylation of TCF21 gene and its expression in chicken adipose tissue[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3375- 3389. | |
25 | ZHAO X , ZHUANG H , YOON S C , et al. Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances[J]. J Food Quality, 2017, 2017 (1): 6370739. |
26 | ZHANG L , YU Q , ZHANG M , et al. Intelligent detection of quality deterioration and adulteration of fresh meat products in the supply chain: Research progress and application[J]. Food Biosci, 2023, 103047. |
27 | BENNETT J P , CATALDI D , LIU Y E , et al. Variations in bioelectrical impedance devices impact raw measures comparisons and subsequent prediction of body composition using recommended estimation equations[J]. Clin Nutr ESPEN, 2024, 63, 540- 550. |
28 | BENNETT J P , LIU Y E , KELLY N N , et al. Next-generation smart watches to estimate whole-body composition using bioimpedance analysis: accuracy and precision in a diverse, multiethnic sample[J]. Am J Clin Nutr, 2022, 116 (5): 1418- 1429. |
29 | LI G , WANG S , DUAN Y Y . Towards gel-free electrodes: A systematic study of electrode-skin impedance[J]. Sens Actuators B Chem, 2017, 241, 1244- 1255. |
30 | DEGEN T , JACKEL H . Continuous monitoring of electrode--skin impedance mismatch during bioelectric recordings[J]. IEEE Trans Biomed Eng, 2008, 55 (6): 1711- 1715. |
31 | BERA T K . Bioelectrical impedance methods for noninvasive health monitoring: a review[J]. J Med Eng, 2014 (1): 381251. |
32 | COLE K S , COLE R H . Dispersion and absorption in dielectrics Ⅰ. Alternating current characteristics[J]. J Chem Phys, 1941, 9 (4): 341- 351. |
33 | 郑伊迎, 程红, 邝玉娴, 等. 生物电阻抗法测量18~42岁成人四肢骨骼肌质量的准确性评价[J]. 实用医学杂志, 2024, 40 (4): 549- 553. |
ZHENG Y Y , CHENG H , KUANG Y X , et al. Accuracy evaluation of bioelectrical impedance analysis in assessment of appendicular skeletal muscle mass in adults aged 18-42 years[J]. The Journal of Practical Medicine, 2024, 40 (4): 549- 553. | |
34 | 丁强, 王忠义, 黄岚, 等. 生物阻抗技术及其在肉品质检测中的应用[J]. 传感器与微系统, 2009, 28 (3): 4- 7. |
DING Q , WANG Z Y , HUANG L , et al. Development of portable bio-impedance spectroscopy system for measuring porcine meat quality[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 28 (3): 4- 7. | |
35 | 沈毅鸿. 小型生物电阻抗测量系统研究[D]. 大连: 大连理工大学, 2018. |
SHEN Y H. Research of a portable bioimpedance measuring system[D]. Dalian: Dalian University of Technology, 2018. (in Chinese) | |
36 | 宋玲玉. 基于生物电阻抗的肌肉量智能检测技术研究[D]. 南京: 南京邮电大学, 2023. |
SONG L Y. Research on intelligent measurement technology of muscle mass based on bioelectrical impedance[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. (in Chinese) | |
37 | DE LORENZO LORENZO A , ANDREOLI A , MATTHIE J , et al. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review[J]. J Appl Physiol, 1997, 82 (5): 1542- 1558. |
38 | 黄潇, 唐求, 周朝霞, 等. 用于生物电阻抗谱测量的程控宽频恒流源设计[J]. 电子测量与仪器学报, 2021, 35 (4): 145- 153. |
HUANG X , TANG Q , ZHOU Z X , et al. Design of programmable broadband constant current source applied to bioelectrical impedance measurement[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35 (4): 145- 153. | |
39 | MEDRANO G, UBI A, ZIMMERMANN N, et al. Skin electrode impedance of textile electrodes for bioimpedance spectroscopy[C]. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography: ICEBI 2007, August 29th-September 2nd 2007, Graz, Austria. Springer Berlin Heidelberg, 2007: 260-263. |
40 | MEDING J T , TUVSHINBAYAR K , DOPKE C , et al. Textile electrodes for bioimpedance measuring[J]. Commun Dev Assem Text Prod, 2021, 2 (1): 49- 60. |
41 | BRABANT O , LOROESCH S , ADLER A , et al. Performance evaluation of electrode design and material for a large animal electrical impedance tomography belt[J]. Vet Rec, 2022, 191 (12): 17- 31. |
42 | MIN M , PARVE T , RONK A , et al. Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement[J]. IEEE Trans Instrum Meas, 2007, 56 (4): 1365- 1372. |
43 | MAJZOUB S , ALLAGUI A , ELWAKIL A S . Time-frequency design of a multi-sine excitation with random phase and controllable amplitude for (bio) impedance measurements[J]. IEEE Access, 2022, 10, 31641- 31648. |
44 | RADOGNA A V , CAPONE S , FRANCIOSO L , et al. Performance analysis of an MLS-Based interface for impulse response estimation of resistive and capacitive sensors[J]. IEEE Trans Circuits Syst Ⅰ Regul Pap, 2022, 69 (9): 3666- 3678. |
45 | JIANG Z , YAO J , WANG L , et al. Development of a portable electrochemical impedance spectroscopy system for bio-detection[J]. IEEE SENS J, 2019, 19 (15): 5979- 5987. |
46 | YANG Y , KANG M , LU Y , et al. Design of a wideband excitation source for fast bioimpedance spectroscopy[J]. Meas Sci Technol, 2010, 22 (1): 013001. |
47 | PLIQUETT U , GERSING E , PLIQUETT F . Evaluation of fast time-domain based impedance measurements on biological tissue-beurteilung schneller impedanzmessungen im zeitbereich an biologischen geweben[J]. Biomed eng-Biomed Te, 2000, 45 (1-2): 6- 13. |
48 | REGNACQ L , WU Y , NESHATVAR N , et al. A Goertzel filter-based system for fast simultaneous multi-frequency EIS[J]. IEEE Trans Circuits Syst Ⅱ: Exp Brief, 2021, 68 (9): 3133- 3137. |
49 | MORO A B , PIRES C C , DA SILVA L P , et al. Prediction of physical characteristics of the lamb carcass using in vivo bioimpedance analysis[J]. animal, 2019, 13 (8): 1744- 1749. |
50 | AVRIL D H , LALLO C , MLAMBO V , et al. The application of bioelectrical impedance analysis in live tropical hair sheep as a predictor of body composition upon slaughter[J]. Trop Anim Health Prod, 2013, 45, 1803- 1808. |
51 | MORO A B , MONTANHOLI Y R , GALVANI D B , et al. Using segmental bioimpedance analysis to estimate soft tissue and chemical composition of retail cuts and carcasses of lambs[J]. Meat Sci, 2022, 183, 108644. |
52 | ALTMANN M , PLIQUETT U , SUESS R , et al. Prediction of lamb carcass composition by impedance spectroscopy[J]. J Anim Sc, 2004, 82 (3): 816- 825. |
53 | FIELDING C L , MAGDESIAN K G , ELLIOTT D A , et al. Use of multifrequency bioelectrical impedance analysis for estimation of total body water and extracellular and intracellular fluid volumes in horses[J]. Am J Vet Res, 2004, 65 (3): 320- 326. |
54 | WALLER A , LINDINGER M I . Hydration of exercised Standardbred racehorses assessed noninvasively using multi-frequency bioelectrical impedance analysis[J]. Equine Vet J Suppl, 2006, 38 (S36): 285- 290. |
55 | LATMAN N S , KEITH N , NICHOLSON A , et al. Bioelectrical impedance analysis determination of water content and distribution in the horse[J]. Res Vet Sci, 2011, 90 (3): 516- 520. |
56 | MARCHELLO M J , SLANGER W D . Bioelectrical impedance can predict skeletal muscle and fat-free skeletal muscle of beef cows and their carcasses[J]. J Anim Sci, 1994, 72 (12): 3118- 3123. |
57 | SARUBBI F , BACULO R , BALZARANO D . Bioelectrical impedance analysis for the prediction of fat-free mass in buffalo calf[J]. Animal, 2008, 2 (9): 1340- 1345. |
58 | SARUBBI F , BACULO R , IANNUZZI L . Bioelectrical impedance analysis for the prediction of hot carcass weight in buffalo calf[J]. Ital J Anim Sci, 2008, 7 (4): 513- 523. |
59 | DAZA A , MATEOS A , OVEJERO I , et al. Prediction of body composition of Iberian pigs by means bioelectrical impedance[J]. Meat Sci, 2006, 72 (1): 43- 46. |
60 | SWANTEK P M , CRENSHAW J D , MARCHELLO M J , et al. Bioelectrical impedance: a nondestructive method to determine fat-free mass of live market swine and pork carcasses[J]. J Anim Sci, 1992, 70 (1): 169- 177. |
61 | ZUO J , LIANG J , CHENG S , et al. Live chicken body fat measurement technology based on bio-electrical impedance[J]. Comput Electron Agric, 2024 (220): 108890. |
62 | 刘健, 吴锦辉, 祝鹏飞, 等. 基于生物电阻抗技术的肉种鸡母鸡腹部脂肪含量预测研究[J]. 中国家禽, 2025, 47 (4): 89- 95. |
LIU J , WU J H , ZHU P F , et al. Prediction of abdominal fat content in broiler breeder hens based on bioelectrical impedance technology[J]. China Poultry, 2025, 47 (4): 89- 95. | |
63 | PUNAL S B , NICODEMUS N , DEL BARRIO A S , et al. Application of bioelectrical impedance analysis to assess body composition of male and female broiler chickens from 2 different strains throughout the growth period[J]. Poult Sci, 2024, 103 (3): 103447. |
64 | QIU J , LIN Y , WU J , et al. Rapid beef quality detection using spectra pre-processing methods in electrical impedance spectroscopy and machine learning[J]. Int J Food Sci Technol, 2024, 59 (3): 1624- 1634. |
65 | PRZYBYLSKI W , JAWORSKA D , SOT M , et al. Can bioelectrical impedance analysis (BIA) be used to predict pig's meat quality in vivo?[J]. Appl Sci, 2022, 12 (23): 12035. |
[1] | BAO Shan-ke,ZHANG Li,KONG Xiang-ying,WANG Li,ZHOU Yu-chun,SUN Bao-zhong,YU Qun-li,WANG Fu-ning,XIE Peng,LI Hai-peng. The Quality Evaluation of Different Muscles from Plateau Yak [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(3): 388-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||