[1] GOSZCZYNSKI D E, NAVARRO M, MUTTO A A, et al. Review:embryonic stem cells as tools for in vitro gamete production in livestock[J]. Animal, 2023, 17(Suppl 1):100828. [2] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [3] POLESSKAYA A, CUVELLIER S, NAGUIBNEVA I, et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency[J]. Genes Dev, 2007, 21(9):1125-1138. [4] YU J Y, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920. [5] SETTHAWONG P, PHAKDEEDINDAN P, TIPTANAVATTANA N, et al. Generation of porcine induced-pluripotent stem cells from Sertoli cells[J]. Theriogenology, 2019, 127:32-40. [6] ZHOU M, ZHANG M L, GUO T X, et al. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11:1196273. [7] KIMURA K, TSUKAMOTO M, TANAKA M, et al. Efficient reprogramming of canine peripheral blood mononuclear cells into induced pluripotent stem cells[J]. Stem Cells Dev, 2021, 30(2):79-90. [8] ZHANG Y F, HE Y H, WU P, et al. miR-200c-141 enhances sheep kidney cell reprogramming into pluripotent cells by targeting ZEB1[J]. Int J Stem Cells, 2021, 14(4):423-433. [9] LIU M N, ZHAO L X, WANG Z X, et al. Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition[J]. Front Cell Dev Biol, 2021, 9:785055. [10] BESSI B W, BOTIGELLI R C, PIERI N C G, et al. Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation[J]. Cells, 2021, 10(6):1531. [11] HAN X P, HAN J Y, DING F R, et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Res, 2011, 21(10):1509-1512. [12] SUMER H, LIU J, MALAVER-ORTEGA L F, et al. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J]. J Anim Sci, 2011, 89(9):2708-2716. [13] OGOREVC J, OREHEK S, DOVČ P. Cellular reprogramming in farm animals:an overview of iPSC generation in the mammalian farm animal species[J]. J Anim Sci Biotechnol, 2016, 7:10. [14] WEERATUNGA P, HARMAN R M, VAN DE WALLE G R. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production[J]. Front Vet Sci, 2023, 10:1129287. [15] ZHAO L X, WANG Z X, ZHANG J D, et al. Characterization of the single-cell derived bovine induced pluripotent stem cells[J]. Tissue Cell, 2017, 49(5):521-527. [16] PILLAI V V, KEI T G, REDDY S E, et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance[J]. Anim Sci J, 2019, 90(9):1149-1160. [17] LIU J, BALEHOSUR D, MURRAY B, et al. Generation and characterization of reprogrammed sheep induced pluripotent stem cells[J]. Theriogenology, 2012, 77(2):338-346.e1. [18] TIAN L, SHI S H, HU H Y, et al. Sequence analysis and cloning of Oct4 gene in sheep[J]. Grass-Feeding Livestock, 2019(3):19-24. (in Chinese) 田丽, 时邵辉, 胡虹宇, 等. 绵羊Oct4基因的克隆及序列分析[J]. 草食家畜, 2019(3):19-24. [19] QIU Q, ZHANG G J, MA T, et al. The yak genome and adaptation to life at high altitude[J]. Nat Genet, 2012, 44(8):946-949. [20] ZHONG J C, WANG H, CHAI Z X, et al. Excavation and innovative utilization of yak germplasm resources[J]. The Chinese Livestock and Poultry Breeding, 2022, 18(10):22-29. (in Chinese) 钟金城, 王会, 柴志欣, 等. 牦牛种质资源挖掘与创新利用[J]. 中国畜禽种业, 2022, 18(10):22-29. [21] JIA G X, DING L M, XU S R, et al. Conservation and utilization of yak genetic resources in Qinghai-Tibet plateau:problems and perspectives[J]. Acta Ecologica Sinica, 2020, 40(18):6314-6323. (in Chinese) 贾功雪, 丁路明, 徐尚荣, 等. 青藏高原牦牛遗传资源保护和利用:问题与展望[J]. 生态学报, 2020, 40(18):6314-6323. [22] NICHOLSON M W, TING C Y, CHAN D Z H, et al. Utility of iPSC-derived cells for disease modeling, drug development, and cell therapy[J]. Cells, 2022, 11(11):1853. [23] ABOUL-SOUD M A M, ALZAHRANI A J, MAHMOUD A. Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening[J]. Cells, 2021, 10(9):2319. [24] CAO H G, YANG P, PU Y, et al. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins[J]. Int J Biol Sci, 2012, 8(4):498-511. [25] LUO R J, CAO S Y. Research progress and application prospect of livestock pluripotent stem cells[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10):4003-4015. (in Chinese) 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10):4003-4015. [26] KANG Y, YE S H, ZHAO Q J, et al. Research progress on protection methods of livestock and poultry genetic resource[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(11):208-212. (in Chinese) 康晔, 叶绍辉, 赵倩君, 等. 畜禽遗传资源保护方法的研究进展[J]. 中国畜牧兽医, 2013, 40(11):208-212. [27] WEST F D, TERLOUW S L, KWON D J, et al. Porcine induced pluripotent stem cells produce chimeric offspring[J]. Stem Cells Dev, 2010, 19(8):1211-1220. [28] FAN N N, CHEN J J, SHANG Z C, et al. Piglets cloned from induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):162-166. [29] VARZIDEH F, GAMBARDELLA J, KANSAKAR U, et al. Molecular mechanisms underlying pluripotency and self-renewal of embryonic stem cells[J]. Int J Mol Sci, 2023, 24(9):8386. [30] MAKLAD A, SEDEEQ M, CHAN K M, et al. Exploring Lin28 proteins:unravelling structure and functions with emphasis on nervous system malignancies[J]. Life Sci, 2023, 335:122275. [31] NONG W. Study on Bovine induced pluripotent stem cells[D]. Nanning:Guangxi University, 2014. (in Chinese) 农微. 牛诱导性多能干细胞的初步研究[D]. 南宁:广西大学, 2014. [32] DENG Y F. Studies on buffalo induced pluripotent stem cells[D]. Nanning:Guangxi University, 2012. (in Chinese) 邓彦飞. 水牛诱导多能干细胞的研究[D]. 南宁:广西大学, 2012. [33] BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6):947-956. [34] GHALEB A M, YANG V W. Krüppel-like factor 4(KLF4):what we currently know[J]. Gene, 2017, 611:27-37. [35] PARK C S, LEWIS A, CHEN T, et al. Concise review:regulation of self-renewal in normal and malignant hematopoietic stem cells by Krüppel-like factor 4[J]. Stem Cells Transl Med, 2019, 8(6):568-574. [36] FAN W, LI X L. The SIRT1-c-Myc axis in regulation of stem cells[J]. Front Cell Dev Biol, 2023, 11:1236968. [37] VARLAKHANOVA N V, COTTERMAN R F, DEVRIES W N, et al. myc maintains embryonic stem cell pluripotency and self-renewal[J]. Differentiation, 2010, 80(1):9-19. [38] FARZANEH M, ATTARI F, KHOSHNAM S E. Concise review:LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and tumorigenicity[J]. Cell Reprogram, 2017, 19(5):289-293. [39] WU T, WU J, JIN S X, et al. The study on the transfection efficiency of cationic liposome lipofectamine 3000 in adhesive cells, suspension cells and primary cells[J]. Current Immunology, 2018, 38(2):89-94. (in Chinese) 吴婷, 吴江, 金书欣, 等. 阳离子脂质体Lipofectamine 3000对贴壁细胞、悬浮细胞和原代细胞转染效率比较的研究[J]. 现代免疫学, 2018, 38(2):89-94. [40] DENG Y F, LIU Q Y, LUO C, et al. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors[J]. Stem Cells Dev, 2012, 21(13):2485-2494. [41] ZHANG H, CAO S L, LIU S D. Application progress of lentivirus vector system[J]. Chinese Journal of Veterinary Science, 2021, 41(6):1200-1203, 1218. (in Chinese) 张慧, 曹胜亮, 刘思当. 慢病毒载体系统研究及应用进展[J]. 中国兽医学报, 2021, 41(6):1200-1203, 1218. [42] WANG X Y, MA C C, RODRÍGUEZ LABRADA R, et al. Recent advances in lentiviral vectors for gene therapy[J]. Sci China Life Sci, 2021, 64(11):1842-1857. |