[1] |
MACEDO N, ROVIRA A, TORREMORELL M. Haemophilus parasuis:infection, immunity and enrofloxacin[J]. Vet Res, 2015, 46:128.
|
[2] |
HAU S J, EBERLE K C, BROCKMEIER S L. Importance of strain selection in the generation of heterologous immunity to Glaesserella (Haemophilus) parasuis[J]. Vet Immunol Immunopathol, 2021, 234:110205.
|
[3] |
NI H B, GONG Q L, ZHAO Q, et al. Prevalence of Haemophilus parasuis "Glaesserella parasuis" in pigs in China:a systematic review and meta-analysis[J]. Prev Vet Med, 2020, 182:105083.
|
[4] |
KIELSTEIN P, RAPP-GABRIELSON V J. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts[J]. J Clin Microbiol, 1992, 30(4):862-865.
|
[5] |
ZHANG J M, XU C G, GUO L L, et al. Prevalence and characterization of genotypic diversity of Haemophilus parasuis isolates from southern China[J]. Can J Vet Res, 2012, 76(3):224-229.
|
[6] |
王静, 周媛媛, 张学谅, 等. 副猪嗜血杆菌疫苗研究进展[J]. 动物医学进展, 2020, 41(3):92-96.WANG J, ZHOU Y Y, ZHANG X L, et al. Progress on Haemophilus parasuis vaccines[J]. Progress in Veterinary Medicine, 2020, 41(3):92-96. (in Chinese)
|
[7] |
MOLERES J, SANTOS-LÓPEZ A, LÁZARO I, et al. Novel bla ROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs[J]. Appl Environ Microbiol, 2015, 81(9):3255-3267.
|
[8] |
LIU H S, XUE Q, ZENG Q Y, et al. Haemophilus parasuis vaccines[J]. Vet Immunol Immunopathol, 2016, 180:53-58.
|
[9] |
ZHANG Y H, LI G, XIE F, et al. Evaluation of glutathione-binding protein A of Haemophilus parasuis as a vaccine candidate in a mouse model[J]. J Vet Med Sci, 2017, 79(1):184-187.
|
[10] |
JIA Y C, CHEN X, ZHOU Y Y, et al. Application of mouse model for evaluation of recombinant LpxC and GmhA as novel antigenic vaccine candidates of Glaesserella parasuis serotype 13[J]. J Vet Med Sci, 2021, 83(10):1500-1508.
|
[11] |
LI M, CAI R J, SONG S, et al. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model[J]. PLoS One, 2017, 12(4):e0176537.
|
[12] |
WEN Y P, YAN X F, WEN Y P, et al. Immunogenicity of the recombinant HxuCBA proteins encoded by hxuCBA gene cluster of Haemophilus parasuis in mice[J]. Gene, 2016, 591(2):478-483.
|
[13] |
杨依, 张晴云, 梅坤荣. 新型冠状病毒亚单位疫苗研究进展及现状[J]. 中国生物工程杂志, 2022, 42(5):124-138.YANG Y, ZHANG Q Y, MEI K R. Progress and current situation of SARS-Cov-2 subunit vaccine development[J]. China Biotechnology, 2022, 42(5):124-138. (in Chinese)
|
[14] |
YANG S L, LI Y, DAI L P, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults:two randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J]. Lancet Infect Dis, 2021, 21(8):1107-1119.
|
[15] |
LAL H, CUNNINGHAM A L, GODEAUX O, et al. Efficacy of an adjuvanted Herpes Zoster subunit vaccine in older adults[J]. N Engl J Med, 2015, 372(22):2087-2096.
|
[16] |
李大鹏. 副猪嗜血杆菌病重组亚单位疫苗候选抗原蛋白的免疫保护效力评价[D]. 哈尔滨:中国农业科学院, 2016.LI D P. Evaluation of the immunoprotective efficacy of subunit vaccine candidates of Haemophilus parasuis serovar 5[D]. Harbin:Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
|
[17] |
LI G, XIE F, LI J J, et al. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach[J]. J Proteomics, 2017, 163:111-117.
|
[18] |
TIAN H B, FU F, LI X S, et al. Identification of the immunogenic outer membrane protein A antigen of Haemophilus parasuis by a proteomics approach and passive immunization with monoclonal antibodies in mice[J]. Clin Vaccine Immunol, 2011, 18(10):1695-1701.
|
[19] |
ZHANG L H, WEN Y P, LI Y, et al. Comparative proteomic analysis of the membrane proteins of two Haemophilus parasuis strains to identify proteins that may help in habitat adaptation and pathogenesis[J]. Proteome Sci, 2014, 12(1):38.
|
[20] |
朱晓明. 副猪嗜血杆菌重组蛋白ELISA检测方法的建立及亚单位疫苗候选因子的筛选[D]. 南京:南京农业大学, 2015.ZHU X M. Establishment of an indirect ELISA for detecting Haemophilus parasuis and screening of subunit vaccine candidates[D]. Nanjing:Nanjing Agricultural University, 2015. (in Chinese)
|
[21] |
ZHU K X, YU D, AN J H, et al. Characterization and protective activity of monoclonal antibodies directed against Fe (3+) ABC transporter substrate-binding protein of Glaesserella parasuis[J]. Vet Res, 2021, 52(1):100.
|
[22] |
GERLACH G F, ANDERSON C, KLASHINSKY S, et al. Molecular characterization of a protective outer membrane lipoprotein (OmlA) from Actinobacillus pleuropneumoniae serotype 1[J]. Infect Immun, 1993, 61(2):565-572.
|
[23] |
VANINI M M T, SPISNI A, SFORÇA M L, et al. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction[J]. Proteins, 2008, 71(4):2051-2064.
|
[24] |
ZHANG B, XU C G, LIAO M. Outer membrane protein P2 of the Haemophilus parasuis SC096 strain contributes to adherence to porcine alveolar macrophages cells[J]. Vet Microbiol, 2012, 158(1-2):226-227.
|
[25] |
FU S L, OU J W, ZHANG M M, et al. The live attenuated Actinobacillus pleuropneumoniae triple-deletion mutant ΔapxIC ΔapxIIC ΔapxIV-ORF1 strain, SLW05, immunizes pigs against lethal challenge with Haemophilus parasuis[J]. Clin Vaccine Immunol, 2013, 20(2):134-139.
|
[26] |
GHOSH D, STUMHOFER J S. The spleen:"epicenter" in malaria infection and immunity[J]. J Leukoc Biol, 2021, 110(4):753-769.
|
[27] |
LIU C, CHU D W, KALANTAR-ZADEH K, et al. Cytokines:from clinical significance to quantification[J]. Adv Sci (Weinh), 2021, 8(15):2004433.
|
[28] |
ABBAS A K, TROTTA E, SIMEONOV D R, et al. Revisiting IL-2:biology and therapeutic prospects[J]. Sci Immunol, 2018, 3(25):eaat1482.
|
[29] |
CHOY E H, DE BENEDETTI F, TAKEUCHI T, et al. Translating IL-6 biology into effective treatments[J]. Nat Rev Rheumatol, 2020, 16(6):335-345.
|
[30] |
JANG D I, LEE A H, SHIN H Y, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics[J]. Int J Mol Sci, 2021, 22(5):2719.
|
[31] |
KAK G, RAZA M, TIWARI B K. Interferon-gamma (IFN-γ):exploring its implications in infectious diseases[J]. Biomol Concepts, 2018, 9(1):64-79.
|
[32] |
KITCHING A R, TIPPING P G, TIMOSHANKO J R, et al. Endogenous interleukin-10 regulates Th1 responses that induce crescentic glomerulonephritis[J]. Kidney Int, 2000, 57(2):518-525.
|
[33] |
SARAIVA M, VIEIRA P, O'GARRA A. Biology and therapeutic potential of interleukin-10[J]. J Exp Med, 2020, 217(1):e20190418.
|