[1]PAPA S. Mitochondrial oxidative phosphorylation changs in the life span molecular aspects and physiopathological implications[J]. Biochim Biophys Acta, 1996,1276:87-105.
[2]STILLER J W, REEL D E, JOHNSON J C. A single origin of plastids revisited:convergent evolution in organellar genome content[J]. J Phycol, 2003, 39: 95-105.
[3]LE MOINE C M R, MORASH A J, MCCLELLAND G B.Changes in HIF-1α protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia[J].Am J Physiol Regul Integr Comp Physiol, 2011, 301: 1098-1104.
[4]LIN Y Q, XU Y O, YUE Y, et al. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles[J]. Genet Mol Res, 2012, 11 (3): 2871-2877.
[5]XING G Q, QUALLS C, HUICHO L, et al. Adaptation and mal-adaptation to ambient hypoxia; Andean, ethiopian and himalayan patterns[J].PLoS ONE, 2008, 3(6): e2342.
[6]张浩,吴常信,强巴央宗,等. 藏鸡心脏高海拔低氧适应相关酶的研究[J]. 中国应用生理学杂志,2008,24(2):233-236.
[7]YI X, LIANG Y, HUERTA-SANCHEZ E, et a1. Sequencing of 50 human exomes reveals adaptation to high altitude[J]. Science, 2010, 329(75): 75-78.
[8]KIM J, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3: 177-185.
[9]SEMENZA G L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1[J]. J Biol Chem, 2007, 405: 1-9.
[10]DEHNE N, BRÜNE B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-A hypoxia-Inducible factor relay story[J]. Antioxid Redox Signal, 2012, Sep6.
[11]BISHOP S P, COLE C R. Ultrastructural changes in the canine myocardium with right ventricular hypertrophy and congestive heart failure[J]. Lab Invest, 1969, 20: 219-229.
[12]RUMSEY W L, ABBOTT B, BERTELSEN D, et al. Adaptation to hypoxia alters energy metabolism in rat heart[J]. Am J Physiol Heart Circ Physiol, 1999, 276:H71-H80.
[13]LANDO D, PEET D J, GOMAN J J, et al. HIF-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity[J].Genes Dev, 2001, 15:2675-2886.
[14]HAGEN T, TAYLOR C T, LAM F, et al. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1a[J]. Science, 2003, 302 : 1975-1978.
[15]HUANG L E, ARANY Z, LIVINGSTON D M, et al.Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit[J]. J Biol Chem, 1996, 271: 32253-32259.
[16]YANG Z Z, ZHANG A Y, YI F X, et al. Redox regulation of HIF-1 levels and HO-1 expression in renal medullary interstitial cells[J]. Am J Physiol Renal Physiol, 2003, 284: F1207-F1215.
[17]PAN Y, MANSFIELD K D, BERTOZZI C C, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro[J]. Mol Cell Biol, 2007, 27:912-925.
[18]GUZY R D, HOYOS B, ROBIN E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing[J]. Cell Metab, 2005, 1: 401-408.
[19]BRUNELLE J K, BELL E L, QUESADA N M, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation[J]. Cell Metab, 2005, 1:409-414.
[20]MANSFIELD K D, GUZY R D, PAN Y, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-ɑ activation[J]. Cell Metab, 2005, 1: 393-399.
[21]KAELIN W G. ROS: Really involved in oxygen sensing[J].Cell Metab, 2005,1: 357-358.
[22]ALI S S, HSIAO M, ZHAO H W, et al. Hypoxia-adaptation involves mitochondrial metabolic depression and decreased ROS leakage[J]. PLoS ONE, 2012, 7(5): e36801.
[23]KLIMOVA T, CHANDEL N S. Mitochondrial complex III regulates hypoxic activation of HIF[J].Cell Death Differ,2008, 15: 660-666.
[24]BLEVICH I, VERKHOVSKY M I. Molecular mechanism of proton translocation by cytochrome c oxidase[J]. Antioxid Redox Signal, 2008, 1(10):1-29.
[25]GUZY R D, SCHUMACKER P T. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia[J]. Exp Physiol, 2006, 91(5): 807-819.
[26]METZEN E, ZHOU J, JELKMANN W, et al. Nitric oxide impairs normoxic degradation of HIF-la by inhibition of prolyl hydroxylases[J]. Mol Biol Cell, 2003, 14: 3470-3481.
[27]KIMURA H, OGURA T, KURASHIMA Y, et al. Effects of nitric oxide donors on vascular endothelial growth factor gene induction[J]. Biochem Biophys Res Commun, 2002, 296: 976-982.
[28]MONCADA S, ERUSALIMSKY J D. Does nitric oxide modulate mitochondrial energy generation and apoptosis?[J].Nat Rev Mol Cell Biol, 2002,3: 214-220.
[29]CASTELLO P R, DAVID P S, MCCLURE T, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes[J]. Cell Metab, 2006, 3: 277-287.
[30]NOHL H, STANIEK K, SOBHIAN B, et al. Mitochondria recycle nitrite back to the bioregulator nitric monoxide[J]. Acta Biochim Pol, 2000, 47: 913-921.
[31]BALL K A, NELSON A W, FOSTER D G, et al. Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1a in hypoxic mammalian cells[J]. Biochem Biophys Res Commun, 2012,420(4):727-732.
[32]CHOWDHURY R, GODOY L C, THIANTANAWAT A, et al. Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma Cells[J].Chem Res Toxicol, 2012, 25(10): 2194-2202.
[33]ULLRICH V, SCHILDKNECHT S. Sensing hypoxia by mitochondria: A unifying hypothesis involving S-nitrosation[J]. Antioxid Redox Signal, 2012, Sep11.
[34]FEALA J D, COQUIN L, ZHOU D. et al. Metabolism as means for hypoxia adaptation: metabolic profiling and flux balance analysis[J]. BMC Syst Biol, 2009, 3: 91.
[35]FERGUSON M, MOCKETT R J, SHEN Y. et al. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster[J]. J Biol Chem, 2005, 390: 501-511.
[36]BURKE P V, POYTON R O. Structure/function of oxygen-regulated isoforms in cytochrome c oxidase[J]. J Exp Biol, 1998, 201: 1163-1175.
[37]FUKUDA R, ZHANG H, KIM J W, et al. Regulation of COX subunit composition by HIF-1: a mechanism for optimizing the efficiency of respiration in hypoxic cells[J]. Cell,2007, 129: 111-122.
[38]SCOTT G R, SCHULTE P M, EGGINTON S, et al. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose[J]. Mol Biol Evol, 2011, 28(1):351-363.
[39]BAO H G, ZHAO C J, WU C X, et al. Association of MT-ND5 gene variation with mitochondrial respiratory control ratio and NADH dehydrogenase activity in Tibet chicken embryos[J].Anim Genet, 2007, 38: 514-516.
[40]DEHAAN C, HABIBI-NAZHAD B, YAN E, et al. Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells [J]. Mol Cancer, 2004, 3: 19.
[41]XU S Q, HUA S, HE J, et al. High altitude adaptation and phylogeny analysis of tibetan horse based on the mitochondrial genome[J]. J Genet Genomics, 2007, 34(8): 720-729.
[42]YU L, WANG X P, ZHANG Y P, et al. Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation[J]. Mitochondrion, 2011, 11(3):497-503.
[43]LANE N, MARTIN W. The energetics of genome complexity[J]. Nature, 2010, 467:929-934.
[44]DAS J. The role of mitochondrial respiration in physiological and evolutionary adaptation[J].Biol Essays, 2006, 28:890-901.
[45]HASSANIN A, ROPIQUET A, COULOUX A, et al. Evolution of the mitochondrial genome in mammals living at high altitude: New insights from a study of the tribe caprini(Bovidae, Antilopinae)[J].J Mol Evol, 2009, 68:293-310.
[46]FONSECA R R D, JOHNSON W E, O'BRIEN S J, et al. The adaptive evolution of the mammalian mitochondrial genome[J]. BMC Genomics, 2008, 9:119.
[47]SIMONSON T S, YANG Y Z, HUFF C D, et a1. Genetic evidence for high-altitude adaptation in tibet[J]. Science, 2010, 329(75):72-75. |