| 1 |
MA X , YI H . BMP15 regulates FSHR through TGF-β receptor Ⅱ and SMAD4 signaling in prepubertal ovary of Rongchang pigs[J]. Res Vet Sci, 2022, 143, 66- 73.
doi: 10.1016/j.rvsc.2021.12.013
|
| 2 |
CHEN X , ZhAO C , DOU M , et al. Deciphering the miRNA transcriptome of Rongchang pig longissimus dorsi at weaning and slaughter time points[J]. J Anim Physiol a Anim Nutr, 2020, 104 (3): 954- 964.
doi: 10.1111/jpn.13314
|
| 3 |
CHEN W , YI H , ZHANG L , et al. Establishing the standard method of cochlear implant in Rongchang pig[J]. Acta Oto-Laryngologica, 2017, 137 (5): 503- 510.
doi: 10.1080/00016489.2016.1267406
|
| 4 |
邓俐. 琪金双昌智慧猪场建成投产提升川渝地方猪产业发展势头[J]. 猪业观察, 2023 (6): 17- 17.
|
|
DENG L . The completion and operation of Qijin Shuangchang Smart Pig Farm have boosted the development momentum of the local pig industry in Sichuan and Chongqing[J]. Observation of Pig Industry, 2023 (6): 17- 17.
|
| 5 |
KHARZINOVA V R , ZINOVIEVA N A . The pattern of genetic diversity of different breeds of pigs based on microsatellite analysis[J]. Vavilovskii Zh Genet, 2020, 24 (7): 747- 754.
|
| 6 |
DOBRINSKY J R , PURSEL V G , LONG C R , et al. Birth of piglets after transfer of embryos cryopreserved by cytoskeletal stabilization and vitrification[J]. Biol Reprod, 2000, 62 (3): 564- 570.
doi: 10.1095/biolreprod62.3.564
|
| 7 |
XINGZHU D , QINGRUI Z , KEREN C , et al. Cryopreservation of porcine embryos: recent updates and progress[J]. Biopreserv Biobank, 2021, 19 (3): 210- 218.
doi: 10.1089/bio.2020.0074
|
| 8 |
PETTERS R M , WELLS K D . Culture of pig embryos[J]. J Reprod Fertil Suppl, 1993, 48, 61- 73.
|
| 9 |
MARTINEZ E A , ANGEL M A , CUELLO C , et al. Successful non-surgical deep uterine transfer of porcine morulae after 24 hour culture in a chemically defined medium[J]. PLoS One, 2014, 9 (8): e104696.
doi: 10.1371/journal.pone.0104696
|
| 10 |
XU H , WANG X , TAO R , et al. Optimal stage for cryotop vitrification of porcine embryos[J]. Cell Reprogram, 2022, 24 (3): 132- 141.
doi: 10.1089/cell.2022.0001
|
| 11 |
MARTINEZ E A , GIL M A , CUELLO C , et al. Current progress in non-surgical embryo transfer with fresh and vitrified/warmed pig embryos[J]. Control Pig Reprod IX, 2013, 101- 112.
|
| 12 |
WHITTINGHAM D G , LEIBO S P , MAZUR P . Survival of mouse embryos frozen to -196 degrees and -269 degrees C[J]. Science, 1972, 178 (4059): 411- 414.
doi: 10.1126/science.178.4059.411
|
| 13 |
PRENTICE J R , ANZAR M . Cryopreservation of Mammalian oocyte for conservation of animal genetics[J]. Vet Med Int, 2010, 2011, 146405.
|
| 14 |
BERTHELOT F , MARTINAT-BOTTÉ F , LOCATELLI A , et al. Piglets born after vitrification of embryos using the open pulled straw method[J]. Cryobiology, 2000, 41 (2): 116- 124.
doi: 10.1006/cryo.2000.2273
|
| 15 |
GAJDA B , SKRZYPCZAK-ZIELIN'SKA M , GAWRO-N'SKA B , et al. Successful production of piglets derived from mature oocytes vitrified using OPS method[J]. Cryo Letters, 2015, 36 (1): 8- 18.
|
| 16 |
AMIDI F , KHODABANDEH Z , NORI MOGAHI M H . Comparison of the effects of vitrification on gene expression of mature mouse oocytes using cryotop and open pulled straw[J]. Int J Fertil Steril, 2018, 12 (1): 61- 67.
|
| 17 |
GONZALEZ-PLAZA A , CAMBRA J M , PARRILLA I , et al. The open cryotop system is effective for the simultaneous vitrification of a large number of porcine embryos at different developmental stages[J]. Front Vet Sci, 2022, 9, 936753.
doi: 10.3389/fvets.2022.936753
|
| 18 |
YILDIRIM R M , SELI E . Mitochondria as therapeutic targets in assisted reproduction[J]. Hum Reprod, 2024, 39 (10): 2147- 2159.
doi: 10.1093/humrep/deae170
|
| 19 |
SOMFAI T , HARAGUCHI S , DANG-NGUYEN T Q , et al. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage[J]. PLoS One, 2023, 18 (3): e0282959.
doi: 10.1371/journal.pone.0282959
|
| 20 |
DHAHRI W , SADIKOV VALDMAN T , WILKINSON D , et al. In vitro matured human pluripotent stem cell-derived cardiomyocytes form grafts with enhanced structure and function in injured hearts[J]. Circulation, 2022, 145 (18): 1412- 1426.
doi: 10.1161/CIRCULATIONAHA.121.053563
|
| 21 |
CUELLO C , GONZALEZ-PLAZA A , PARRILLA I , et al. Vitrification: A reliable method for cryopreservation of animal embryos[M]. Cham: Springer, 2024: 235- 246.
|
| 22 |
李婉君, 徐皆欢, 何孟纤, 等. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55 (5): 1999- 2010.
doi: 10.11843/j.issn.0366-6964.2024.05.018
|
|
LI W J , XU J H , HE M X , et al. Cytochalasin B alleviates the migration disorder of cortical particle caused by vitrification in porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1999- 2010.
doi: 10.11843/j.issn.0366-6964.2024.05.018
|
| 23 |
SOUZA J F , OLIVEIRA C M , LIENOU L L , et al. Vitrification of bovine embryos followed by in vitro hatching and expansion[J]. Zygote, 2018, 26 (1): 99- 103.
doi: 10.1017/S0967199417000570
|
| 24 |
AlMIÑANA C , DUBUISSON F , BAUERSACHS S , et al. Unveiling how vitrification affects the porcine blastocyst: clues from a transcriptomic study[J]. J Anim Sci Biotech, 2022, 13 (1): 46.
doi: 10.1186/s40104-021-00672-1
|
| 25 |
ROGERS K D. Effects of dimethyl sulfoxide and glycerol based vitrification protocols on zona pellucida hardening in mature bovine oocytes[D]. Baton Rouge: Agricultural and Mechanical College, Louisiana State University, 2018.
|
| 26 |
ZHANG L , ZHAO J , LAM S M , et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development[J]. Nat Cell Biol, 2024, 26 (2): 278- 293.
doi: 10.1038/s41556-023-01341-3
|
| 27 |
HARA K , ABE Y , KUMADA N , et al. Extrusion and removal of lipid from the cytoplasm of porcine oocytes at the germinal vesicle stage: centrifugation under hypertonic conditions influences vitrification[J]. Cryobiology, 2005, 50 (2): 216- 222.
doi: 10.1016/j.cryobiol.2005.01.003
|
| 28 |
ESAKI R , UEDA H , KUROME M , et al. Cryopreservation of porcine embryos derived from in vitro-matured oocytes[J]. Biol Reprod, 2004, 71 (2): 432- 437.
doi: 10.1095/biolreprod.103.026542
|
| 29 |
SOMFAI T , KASHIWAZAKI N , OZAWA M , et al. Effect of centrifugation treatment before vitrification on the viability of porcine mature oocytes and zygotes produced in vitro[J]. J Reprod Dev, 2008, 54 (3): 149- 155.
doi: 10.1262/jrd.19150
|
| 30 |
GOMIS J , CUELLO C , SANCHEZ-OSORIO J , et al. Effects of lipid polarisation on survival of in vivo-derived porcine zygotes vitrified by the superfine open pulled-straw method[J]. Reprod Ferti Dev, 2013, 25 (5): 798- 806.
doi: 10.1071/RD12179
|
| 31 |
GUALTIERI R , KALTHUR G , BARBATO V , et al. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells[J]. Antioxidants (Basel), 2021, 10 (3): 337.
doi: 10.3390/antiox10030337
|
| 32 |
KALAB P , KOPF G S , SCHULTZ R M . Modifications of the mouse zona pellucida during oocyte maturation and egg activation: effects of newborn calf serum and fetuin[J]. Biol Reprod, 1991, 45 (5): 783- 787.
doi: 10.1095/biolreprod45.5.783
|
| 33 |
LARMAN M G , SHEEHAN C B , GARDNER D K . Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes[J]. Reproduction, 2006, 131 (1): 53- 61.
doi: 10.1530/rep.1.00878
|
| 34 |
YUMOTO K , SHIMURA T , MIO Y . Removing the zona pellucida can decrease cytoplasmic fragmentations in human embryos: a pilot study using 3PN embryos and time-lapse cinematography[J]. J Assist Reprod Genet, 2020, 37 (6): 1349- 1354.
doi: 10.1007/s10815-020-01773-y
|
| 35 |
KIRIENKO K V , APRYSHKO V P , NAUMOVA A A , et al. Mechanical zona pellucida removal of vitrified-warmed human blastocysts does not affect the clinical outcome[J]. Reprod Biomed Online, 2019, 39 (5): 745- 749.
doi: 10.1016/j.rbmo.2019.06.003
|
| 36 |
SHU Y , PROKAI D , BERGA S , et al. Transfer of IVF-contaminated blastocysts with removal of the zona pellucida resulted in live births[J]. J Assist Reprod Genet, 2016, 33 (10): 1385- 1388.
doi: 10.1007/s10815-016-0776-3
|