[1] UZAL F A, FREEDMAN J C, SHRESTHA A, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease[J].Future Microbiol, 2014, 9(3):361-377. [2] OHTANI K, SHIMIZU T. Regulation of toxin production in Clostridium perfringens[J].Toxins (Basel), 2016, 8(7):207. [3] SUZAKI A, HAYAKAWA S. Clinical and microbiological features of fulminant haemolysis caused by Clostridium perfringens bacteraemia: unknown pathogenesis[J]. Microorganisms, 2023, 11(4):824. [4] SANTOS R, ABDEL-NOUR J, MCAULEY C, et al. Clostridium perfringens associated with dairy farm systems show diverse genotypes[J].Int J Food Microbiol, 2022, 382:109933. [5] TIAN R, XU S, LI P, et al. Characterization of G-type Clostridium perfringens bacteriophages and their disinfection effect on chicken meat[J].Anaerobe, 2023, 81:102736. [6] KAWAMURA T, PRAH I, MAHAZU S, et al. Types A and F Clostridium perfringens in healthcare wastewater from Ghana[J].Appl Environ Microbiol, 2023, 89(12):e0161923. [7] LEE D, JANG G, MIN K C, et al. Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs[J].Arch Virol, 2023, 168(6):166. [8] LU R, LIU B, WU L, et al. A broad-spectrum phage endolysin (LysCP28) able to remove biofilms and inactivate Clostridium perfringens strains[J]. Foods, 2023, 12(2):411. [9] MCDONEL J L. Clostridium perfringens toxins (type A, B, C, D, E)[J].Pharmacol Ther, 1980,10(3):617-655. [10] ROOD J I, ADAMS V, LACEY J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme[J].Anaerobe, 2018, 53:5-10. [11] OU L, YE B, SUN M, et al. Mechanisms of intestinal epithelial cell damage by Clostridium perfringens[J].Anaerobe, 2024, 87:102856. [12] MEHDIZADEH GOHARI I, A NAVARRO M, LI J, et al. Pathogenicity and virulence of Clostridium perfringens[J].Virulence, 2021, 12(1):723-753. [13] UZAL F A, GIANNITTI F, ASIN J. Yellow lamb disease (Clostridium perfringens type A enterotoxemia of sheep): A Review[J]. Animals (Basel), 2022, 12(12):1590. [14] JIANG Y F, MA Y H, LIU Q Q, et al. Tracing Clostridium perfringens strains from beef processing of slaughter house by pulsed-field gel electrophoresis, and the distribution and toxinotype of isolates in Shaanxi province, China[J]. Food Microbiol, 2022, 101:103887. [15] MOREIRA G M, SALVARANI F M, CUNHA C E, et al. Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants[J].Sci Rep, 2016, 6:22816. [16] SMITH L A. Botulism and vaccines for its prevention[J]. Vaccine, 2009, 27(4):D33-D39. [17] LANIGAN T M, KOPERA H C, SAUNDERS T L. Principles of genetic engineering[J].Genes (Basel), 2020, 11(3):291. [18] 邬沛伶,李依璇,王浩杰,等. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. WU P L,LI Y X,WANG H J, et al. Research progress of porcine epidemic diarrhea vaccine for pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3):1042-1058. (in Chinese) [19] EVERS M J W, VAN DE WAKKER S I, DE GROOT E M, et al. Functional siRNA delivery by extracellular vesicle-Liposome hybrid nanoparticles[J]. Adv Healthc Mater, 2022, 11(5):e2101202. [20] HO J K, JEEVAN-RAJ B, NETTER H J. Hepatitis B virus (HBV) subviral particles as protective vaccines and vaccine platforms[J]. Viruses, 2020, 12(2):126. [21] YU J, THOMAS P V, SCIACCA M, et al. Ad26.COV2.S and SARS-CoV-2 spike protein ferritin nanoparticle vaccine protect against SARS-CoV-2 Omicron BA.5 challenge in macaques[J]. Cell Rep Med, 2023, 4(4):101018. [22] HAN J A, KANG Y J, SHIN C, et al. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell(DC)-based vaccine development[J].Nanomedicine, 2014, 10(3):561-569. [23] 李志鹏, 刘福航, 崔奎青, 等. 铁蛋白Ferritin原核表达和纯化及纳米颗粒胞外自组装[J].畜牧兽医学报, 2018, 49(1):75-82. LI Z P, LIU F H, CUI K Q, et al. Prokaryotic expression and purification of ferritin and nano-particles self-assembling in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(1):75-82.(in Chinese) [24] BHUSHAN B, KUMAR S U, MATAI I, et al. Ferritin nanocages: a novel platform for biomedical applications[J]. J Biomed Nanotechnol, 2014, 10(10):2950-2976. [25] LI Z, CUI K, HUANG K, et al. Self assembling rotavirus VP6 nanoparticle vaccines expressed in Escherichia coli elicit systemic and mucosal responses in mice[J]. Protein Pept Lett, 2019, 26(12): 904-909. [26] NAKAMURA M, CROSS W R. The lecithinase (alpha toxin) activity of strains of Clostridium perfringens[J]. Proc Soc Exp Biol Med, 1968, 127(3):719-722. [27] 谢 磊. 抑食金球藻(秦皇岛株)细胞毒性及溶血活性研究[D].广州:暨南大学,2018. XIE L. Cytotoxic effect and hemolytic characteristic of Aureococcus anophagefferens (Qinhangdao strain)[D]. Guangzhou: Jinan University, 2018.(in Chinese) [28] PERTMER T M, ROBERTS T R, HAYNES J R. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery[J]. J Virol, 1996, 70(9):6119-6125. [29] JEWELL S A, TITBALL R W, HUYET J, et al. Clostridium perfringens α-toxin interaction with red cells and model membranes[J].Soft Matter, 2015, 11(39):7748-7761. [30] HU J, CLADEL N M, CHRISTENSEN N D. Increased immunity to cottontail rabbit papillomavirus infection in EIII/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression[J].Viral Immunol, 2007, 20(2):320-325. [31] NAGAHAMA M, NAKAYAMA T, MICHIUE K, et al. Site-specific mutagenesis of Clostridium perfringens alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities[J]. Infect Immun, 1997, 65(8):3489-3492. [32] NAGAHAMA M, OKAGAWA Y, NAKAYAMA T, et al. Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin[J]. J Bacteriol, 1995, 177(5):1179-1185. [33] ZAKERI B, FIERER J O, CELIK E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J].Proc Natl Acad Sci U S A, 2012, 109(12):E690-E697. [34] 赵晓军, 王美玲, 段跃强, 等. 重组产气荚膜梭菌α毒素对家兔的安全性和免疫效力评价[J]. 中国预防兽医学报, 2023, 45(4):429-433. ZHAO X J,WANG M L,DUAN Y Q, et al. Safety andimmune efficacy of recombinant Clostridium perfringens α-toxin in rabbit[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45(4): 429-433. (in Chinese) [35] 杜吉革, 朱 真, 薛 麒, 等. 产气荚膜梭菌重组ε毒素突变体的免疫保护力评价[J].畜牧兽医学报, 2018, 49(4):777-785. DU J G,ZHU Z,XUE Q, et al. Evaluation of protective efficacy of recombinant mutant of Clostridium perfringens ε toxin[J].Acta Veterinaria et Zootechnica Sinica, 2018, 49(4):777-785. (in Chinese) [36] KANG Y F, SUN C, ZHUANG Z, et al. Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates[J].ACS Nano,2021,15(2): 2738-2752. [37] MAASSEN C B, BOERSMA W J, VAN HOLTEN-NEELEN C, et al. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development[J].Vaccine, 2003, 21(21-22):2751-2757. [38] TANG X, YU W, SHEN L, et al. Conjugation with 8-arm PEG and CRM (197) enhances the immunogenicity of SARS-CoV-2 ORF8 protein[J]. Int Immunopharmacol, 2022, 109:108922. [39] YENYUWADEE S, SANCHEZ-TRINCADO LOPEZ J L, SHAH R, et al. The evolving role of tissue-resident memory T cells in infections and cancer[J]. Sci Adv, 2022, 8(33):eabo5871. |