

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4626-4637.doi: 10.11843/j.issn.0366-6964.2025.09.040
赵慧玉1,2(
), 雷伊诺2,3(
), 幸倩如2, 张珊2, 张广智2, 蒋卉2, 沈青春2, 丁家波2, 姜世金1,*(
), 范学政2,*(
)
收稿日期:2024-12-18
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
姜世金,范学政
E-mail:1765137226@qq.com;1229042392@qq.com;jshijin@163.com;fanxuezheng@caas.cn
作者简介:赵慧玉(1999-),女,山东莒南人,硕士,主要从事动物微生物学和免疫学研究,E-mail:1765137226@qq.com赵慧玉和雷伊诺为同等贡献作者
基金资助:
ZHAO Huiyu1,2(
), LEI Yinuo2,3(
), XING Qianru2, ZHANG Shan2, ZHANG Guangzhi2, JIANG Hui2, SHEN Qingchun2, DING Jiabo2, JIANG Shijin1,*(
), FAN Xuezheng2,*(
)
Received:2024-12-18
Online:2025-09-23
Published:2025-09-30
Contact:
JIANG Shijin, FAN Xuezheng
E-mail:1765137226@qq.com;1229042392@qq.com;jshijin@163.com;fanxuezheng@caas.cn
摘要:
本研究旨在制备产气荚膜梭菌α毒素-铁蛋白纳米颗粒抗原并评价其对小鼠的免疫原性。将带有D56G、H68G点突变和Spytag序列的α毒素全长基因和带有SpyCatcher序列的铁蛋白(Ferritin)基因片段分别克隆至原核表达载体pET 28a,后进行表达并对表达产物进行鉴定和纯化。对纯化后的αm2ST进行细胞毒性、卵磷脂酶活性以及溶血活性分析。将纯化的αm2ST和FeSC在体外对接,随后,将α毒素-铁蛋白(αm2-Fe)对接产物和αm2ST分别与佐剂混合后免疫小鼠。免疫后每周采集小鼠血清,检测IgG、IgG亚型抗体水平和中和效价,并在二免后28 d取脾细胞分析T细胞亚群和IFN-γ分泌水平。结果显示,在28 ℃条件下,αm2ST和FeSC均以可溶性表达为主。αm2ST未被检测出细胞毒性、卵磷脂酶活性和溶血活性,这说明αm2ST已无毒性。将αm2ST和FeSC体外对接后,经SDS-PAGE、TEM和DLS分析,证实αm2-Fe形成直径32.7~50.7 nm的纳米颗粒,主峰为37.8 nm。小鼠免疫后,αm2-Fe组能产生较高水平的IgG2a抗体(P < 0.001);小鼠二免后21 d,αm2-Fe组血清中和效价为64倍,显著高于αm2ST组的32倍(P < 0.05);二免后28 d,αm2-Fe组脾细胞刺激后上清中的IFN-γ也高于αm2ST组(P < 0.05),流式细胞术分析显示αm2-Fe组产生了较高比例的效应性CD8+ T细胞(P < 0.000 1)。小鼠试验证实αm2-Fe纳米颗粒抗原能有效刺激小鼠产生体液免疫和细胞免疫。
中图分类号:
赵慧玉, 雷伊诺, 幸倩如, 张珊, 张广智, 蒋卉, 沈青春, 丁家波, 姜世金, 范学政. 产气荚膜梭菌α毒素-铁蛋白纳米颗粒抗原制备及其对小鼠的免疫原性评价[J]. 畜牧兽医学报, 2025, 56(9): 4626-4637.
ZHAO Huiyu, LEI Yinuo, XING Qianru, ZHANG Shan, ZHANG Guangzhi, JIANG Hui, SHEN Qingchun, DING Jiabo, JIANG Shijin, FAN Xuezheng. Preparation of Clostridium perfringens α Toxin-ferritin Nanoparticle Antigens and Evaluation of Its Immunogenicity in Mice[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4626-4637.
表 1
引物序列"
| 基因名称 Gene name | 引物名称 Primer name | 引物序列(5′→3′) Primer sequence(5′→3′) |
| α | α-F | GCAGCAGCCATCATCATCATCATCACTGGGA$\underline{{\rm{TGGAAAGAT}}}$ |
| α-R | CTCAGCTTCCTTTCGGGCTTTGTTA$\underline{{\rm{TTATTTTATATTATAAG}}}$ | |
| αm2 | αm2-F | $\underline{{\rm{TAAGAATGCATATGATCTATATC}}}$AAGATGGTTTCTGGGATCCTG |
| αm2-R | $\underline{{\rm{GATATAGATCATATGCATTCTTATC}}}$ATAACCTGGATAAGTAGAACC | |
| αm2ST | α-ST-F | GTGGTGGTGGCAGTGCACATATTGTTATGGTTGATGCGTATAAACCGACAAAA $\underline{{\rm{TAATAACAAAGCCCG}}}$ |
| α-ST-R | CACTACCACCGCCACCGCTACCACCACCACC $\underline{{\rm{TTTTATATTATAAGTTGAATTTCCTGAAATCCACTC}}}$ |
| 1 |
UZALF A,FREEDMANJ C,SHRESTHAA,et al.Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease[J].Future Microbiol,2014,9(3):361-377.
doi: 10.2217/fmb.13.168 |
| 2 |
OHTANIK,SHIMIZUT.Regulation of toxin production in Clostridium perfringens[J].Toxins (Basel),2016,8(7):207.
doi: 10.3390/toxins8070207 |
| 3 |
SUZAKIA,HAYAKAWAS.Clinical and microbiological features of fulminant haemolysis caused by Clostridium perfringens bacteraemia: unknown pathogenesis[J].Microorganisms,2023,11(4):824.
doi: 10.3390/microorganisms11040824 |
| 4 |
SANTOSR,ABDEL-NOURJ,MCAULEYC,et al.Clostridium perfringens associated with dairy farm systems show diverse genotypes[J].Int J Food Microbiol,2022,382,109933.
doi: 10.1016/j.ijfoodmicro.2022.109933 |
| 5 |
TIANR,XUS,LIP,et al.Characterization of G-type Clostridium perfringens bacteriophages and their disinfection effect on chicken meat[J].Anaerobe,2023,81,102736.
doi: 10.1016/j.anaerobe.2023.102736 |
| 6 |
KAWAMURAT,PRAHI,MAHAZUS,et al.Types A and F Clostridium perfringens in healthcare wastewater from Ghana[J].Appl Environ Microbiol,2023,89(12):e0161923.
doi: 10.1128/aem.01619-23 |
| 7 |
LEED,JANGG,MINK C,et al.Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs[J].Arch Virol,2023,168(6):166.
doi: 10.1007/s00705-023-05798-3 |
| 8 |
LUR,LIUB,WUL,et al.A broad-spectrum phage endolysin (LysCP28) able to remove biofilms and inactivate Clostridium perfringens strains[J].Foods,2023,12(2):411.
doi: 10.3390/foods12020411 |
| 9 |
MCDONELJ L.Clostridium perfringens toxins (type A, B, C, D, E)[J].Pharmacol Ther,1980,10(3):617-655.
doi: 10.1016/0163-7258(80)90031-5 |
| 10 |
ROODJ I,ADAMSV,LACEYJ,et al.Expansion of the Clostridium perfringens toxin-based typing scheme[J].Anaerobe,2018,53,5-10.
doi: 10.1016/j.anaerobe.2018.04.011 |
| 11 |
OUL,YEB,SUNM,et al.Mechanisms of intestinal epithelial cell damage by Clostridium perfringens[J].Anaerobe,2024,87,102856.
doi: 10.1016/j.anaerobe.2024.102856 |
| 12 |
MEHDIZADEH GOHARII,A NAVARROM,LIJ,et al.Pathogenicity and virulence of Clostridium perfringens[J].Virulence,2021,12(1):723-753.
doi: 10.1080/21505594.2021.1886777 |
| 13 | UZALF A,GIANNITTIF,ASINJ.Yellow lamb disease (Clostridium perfringens type A enterotoxemia of sheep): A Review[J].Animals (Basel),2022,12(12):1590. |
| 14 |
JIANGY F,MAY H,LIUQ Q,et al.Tracing Clostridium perfringens strains from beef processing of slaughter house by pulsed-field gel electrophoresis, and the distribution and toxinotype of isolates in Shaanxi province, China[J].Food Microbiol,2022,101,103887.
doi: 10.1016/j.fm.2021.103887 |
| 15 |
MOREIRAG M,SALVARANIF M,CUNHAC E,et al.Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants[J].Sci Rep,2016,6,22816.
doi: 10.1038/srep22816 |
| 16 | SMITHL A.Botulism and vaccines for its prevention[J].Vaccine,2009,27(4):D33-D39. |
| 17 |
LANIGANT M,KOPERAH C,SAUNDERST L.Principles of genetic engineering[J].Genes (Basel),2020,11(3):291.
doi: 10.3390/genes11030291 |
| 18 |
邬沛伶,李依璇,王浩杰,等.猪流行性腹泻疫苗研究进展[J].畜牧兽医学报,2025,56(3):1042-1058.
doi: 10.11843/j.issn.0366-6964.2025.03.007 |
|
WUP L,LIY X,WANGH J,et al.Research progress of porcine epidemic diarrhea vaccine for pigs[J].Acta Veterinaria et Zootechnica Sinica,2025,56(3):1042-1058.
doi: 10.11843/j.issn.0366-6964.2025.03.007 |
|
| 19 |
EVERSM J W,VAN DE WAKKERS I,DE GROOTE M,et al.Functional siRNA delivery by extracellular vesicle-Liposome hybrid nanoparticles[J].Adv Healthc Mater,2022,11(5):e2101202.
doi: 10.1002/adhm.202101202 |
| 20 |
HOJ K,JEEVAN-RAJB,NETTERH J.Hepatitis B virus (HBV) subviral particles as protective vaccines and vaccine platforms[J].Viruses,2020,12(2):126.
doi: 10.3390/v12020126 |
| 21 |
YUJ,THOMASP V,SCIACCAM,et al.Ad26.COV2.S and SARS-CoV-2 spike protein ferritin nanoparticle vaccine protect against SARS-CoV-2 Omicron BA.5 challenge in macaques[J].Cell Rep Med,2023,4(4):101018.
doi: 10.1016/j.xcrm.2023.101018 |
| 22 |
HANJ A,KANGY J,SHINC,et al.Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell(DC)-based vaccine development[J].Nanomedicine,2014,10(3):561-569.
doi: 10.1016/j.nano.2013.11.003 |
| 23 |
李志鹏,刘福航,崔奎青,等.铁蛋白Ferritin原核表达和纯化及纳米颗粒胞外自组装[J].畜牧兽医学报,2018,49(1):75-82.
doi: 10.11843/j.issn.0366-6964.2018.01.009 |
|
LIZ P,LIUF H,CUIK Q,et al.Prokaryotic expression and purification of ferritin and nano-particles self-assembling in vitro[J].Acta Veterinaria et Zootechnica Sinica,2018,49(1):75-82.
doi: 10.11843/j.issn.0366-6964.2018.01.009 |
|
| 24 |
BHUSHANB,KUMARS U,MATAII,et al.Ferritin nanocages: a novel platform for biomedical applications[J].J Biomed Nanotechnol,2014,10(10):2950-2976.
doi: 10.1166/jbn.2014.1980 |
| 25 |
LIZ,CUIK,HUANGK,et al.Self assembling rotavirus VP6 nanoparticle vaccines expressed in Escherichia coli elicit systemic and mucosal responses in mice[J].Protein Pept Lett,2019,26(12):904-909.
doi: 10.2174/0929866526666190820161328 |
| 26 |
NAKAMURAM,CROSSW R.The lecithinase (alpha toxin) activity of strains of Clostridium perfringens[J].Proc Soc Exp Biol Med,1968,127(3):719-722.
doi: 10.3181/00379727-127-32783 |
| 27 | 谢磊. 抑食金球藻(秦皇岛株)细胞毒性及溶血活性研究[D]. 广州: 暨南大学, 2018. |
| XIE L. Cytotoxic effect and hemolytic characteristic of Aureococcus anophagefferens (Qinhangdao strain)[D]. Guangzhou: Jinan University, 2018. (in Chinese) | |
| 28 |
PERTMERT M,ROBERTST R,HAYNESJ R.Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery[J].J Virol,1996,70(9):6119-6125.
doi: 10.1128/jvi.70.9.6119-6125.1996 |
| 29 |
JEWELLS A,TITBALLR W,HUYETJ,et al.Clostridium perfringens α-toxin interaction with red cells and model membranes[J].Soft Matter,2015,11(39):7748-7761.
doi: 10.1039/C5SM00876J |
| 30 |
HUJ,CLADELN M,CHRISTENSENN D.Increased immunity to cottontail rabbit papillomavirus infection in EIII/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression[J].Viral Immunol,2007,20(2):320-325.
doi: 10.1089/vim.2006.0104 |
| 31 |
NAGAHAMAM,NAKAYAMAT,MICHIUEK,et al.Site-specific mutagenesis of Clostridium perfringens alpha-toxin: replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities[J].Infect Immun,1997,65(8):3489-3492.
doi: 10.1128/iai.65.8.3489-3492.1997 |
| 32 |
NAGAHAMAM,OKAGAWAY,NAKAYAMAT,et al.Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin[J].J Bacteriol,1995,177(5):1179-1185.
doi: 10.1128/jb.177.5.1179-1185.1995 |
| 33 | ZAKERIB,FIERERJ O,CELIKE,et al.Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J].Proc Natl Acad Sci U S A,2012,109(12):E690-E697. |
| 34 | 赵晓军,王美玲,段跃强,等.重组产气荚膜梭菌α毒素对家兔的安全性和免疫效力评价[J].中国预防兽医学报,2023,45(4):429-433. |
| ZHAOX J,WANGM L,DUANY Q,et al.Safety andimmune efficacy of recombinant Clostridium perfringens α-toxin in rabbit[J].Chinese Journal of Preventive Veterinary Medicine,2023,45(4):429-433. | |
| 35 |
杜吉革,朱真,薛麒,等.产气荚膜梭菌重组ε毒素突变体的免疫保护力评价[J].畜牧兽医学报,2018,49(4):777-785.
doi: 10.11843/j.issn.0366-6964.2018.04.015 |
|
DUJ G,ZHUZ,XUEQ,et al.Evaluation of protective efficacy of recombinant mutant of Clostridium perfringens ε toxin[J].Acta Veterinaria et Zootechnica Sinica,2018,49(4):777-785.
doi: 10.11843/j.issn.0366-6964.2018.04.015 |
|
| 36 |
KANGY F,SUNC,ZHUANGZ,et al.Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates[J].ACS Nano,2021,15(2):2738-2752.
doi: 10.1021/acsnano.0c08379 |
| 37 |
MAASSENC B,BOERSMAW J,VAN HOLTEN-NEELENC,et al.Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development[J].Vaccine,2003,21(21-22):2751-2757.
doi: 10.1016/S0264-410X(03)00220-2 |
| 38 |
TANGX,YUW,SHENL,et al.Conjugation with 8-arm PEG and CRM (197) enhances the immunogenicity of SARS-CoV-2 ORF8 protein[J].Int Immunopharmacol,2022,109,108922.
doi: 10.1016/j.intimp.2022.108922 |
| 39 |
YENYUWADEES,SANCHEZ-TRINCADO LOPEZJ L,SHAHR,et al.The evolving role of tissue-resident memory T cells in infections and cancer[J].Sci Adv,2022,8(33):eabo5871.
doi: 10.1126/sciadv.abo5871 |
| [1] | 曾圣鑫, 宋承琦, 申恺源, 郝国鑫, 王雅琨, 王鑫, 王晓旭, 刘志杰, 刘永波, 刘永生, 杨顺利, 付志新. 梅花鹿源A型产气荚膜梭菌的分离鉴定及对小鼠的致病性分析[J]. 畜牧兽医学报, 2025, 56(8): 3976-3984. |
| [2] | 袁橙, 袁月, 张清正, 宋小凯, 徐立新, 严若峰, 李祥瑞, 陆明敏. 巨型艾美耳球虫与产气荚膜梭菌共感染致鸡坏死性肠炎模型的评价[J]. 畜牧兽医学报, 2025, 56(8): 4120-4128. |
| [3] | 刘雨欣, 陈思, 高阳, 顾德媛, 彭海涛, 张东, 张如, 许会会, 刘亚乔, 杨艳玲. 羊布鲁菌外膜囊泡蛋白质组学分析及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(7): 3378-3389. |
| [4] | 赵云海, 张阳阳, 马海云, 王青, 何肖肖, 刘凯, 张钰婷, 刘玉东, 杨永宁, 武小椿, 邢小勇, 权国梅, 张志雄, 包世俊. 牛支原体分子伴侣Dnak的原核表达及黏附特性分析[J]. 畜牧兽医学报, 2025, 56(6): 2868-2878. |
| [5] | 贾琼, 高帅鹏, 修艳宇, 任泓睿, 张书茵, 杨皓宇, 范瑞文. 基于产气荚膜梭菌β毒素纳米抗体双抗夹心ELISA方法的建立[J]. 畜牧兽医学报, 2025, 56(6): 2906-2916. |
| [6] | 谭娟娟, 杨贝莹, 武前悦, 花慧颖, 曹华斌, 严珲, 张锦华. 江西地区野猪菌群多样性分析及其携带产气荚膜梭菌的分离鉴定[J]. 畜牧兽医学报, 2025, 56(4): 1876-1886. |
| [7] | 张越, 茹毅, 郝荣增, 杨锐, 赵陇和, 李亚军, 杨洋, 张荣, 蒋成辉, 郑海学. 非洲猪瘟病毒H108R蛋白的制备及其免疫原性评价[J]. 畜牧兽医学报, 2025, 56(3): 1344-1354. |
| [8] | 赵文悦, 杨景, 邵怡岚, 李佳璇, 姜艳平, 崔文, 王晓娜, 唐丽杰. 表达牛乳铁蛋白肽的罗伊氏乳杆菌分泌型信号肽的筛选及鉴定[J]. 畜牧兽医学报, 2025, 56(3): 1431-1440. |
| [9] | 曾焱, 欧祥龙, 闫晓阳, 刘灿, 廖永洪. 猪胸膜肺炎放线杆菌OmpD、LppB蛋白的原核表达及免疫原性分析[J]. 畜牧兽医学报, 2025, 56(1): 343-352. |
| [10] | 彭美琪, 魏春洁, 郑安琪, 朱亦坤, 徐琳皓, 罗承慧, 韦双双, 裴业春. 层状双氢氧化物-rFel d 1-Can f 1融合变应原对小鼠模型过敏反应的预防效果分析[J]. 畜牧兽医学报, 2024, 55(7): 3143-3154. |
| [11] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
| [12] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
| [13] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
| [14] | 喻琦胜, 朱庆, 周群, 宋鑫, 张家祺, 陈涛云, 徐林, 张朝辉, 张斌. 杆状病毒表达系统表达BCoV纤突蛋白及其对小鼠的免疫原性[J]. 畜牧兽医学报, 2024, 55(2): 640-648. |
| [15] | 陈玲, 陈浩, 岳婵娟, 马锐, 范雪阳, 刘颂蕊, 杨光友. 原核表达的褐黄血蜱唾液腺蛋白和铁蛋白1的免疫保护效果评价[J]. 畜牧兽医学报, 2024, 55(2): 688-697. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||