[1] 刘湘涛,张 强,郭建宏. 口蹄疫[M]. 北京: 中国农业出版社, 2015. LIU X T, ZHANG Q, GUO J H. Foot-and-mouth disease[M]. Beijing: China Agriculture Press, 2015. (in Chinese) [2] JAMAL S M, BELSHAM G J. Foot-and-mouth disease: past, present and future[J]. Vet Res, 2013, 44(1): 116. [3] ALEXANDERSEN S, KITCHING R P, MANSLEY L M, et al. Clinical and laboratory investigations of five outbreaks of foot-and-mouth disease during the 2001 epidemic in the United Kingdom[J]. Vet Rec, 2003, 152(16): 489-496. [4] PERRY B D, RICH K M. Poverty impacts of foot-and-mouth disease and the poverty reduction implications of its control[J]. Vet Rec, 2007, 160(7): 238-241. [5] KNIGHT-JONES T J, RUSHTON J. The economic impacts of foot and mouth disease-what are they, how big are they and where do they occur?[J]. Prev Vet Med, 2013, 112(3-4): 161-173. [6] WOAH. Foot and mouth disease[Z/OL]. 2024.[2025-07-02] https://www.woah.org/en/disease/foot-and-mouth-disease/. [7] LI K, WANG C, YANG F, et al. Virus-host interactions in foot-and-mouth disease virus infection[J]. Front Immunol, 2021, 12:571509. [8] LOGAN G, NEWMAN J, WRIGHT C F, et al. Deep Sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging[J]. J Virol, 2017, 92(1):e01159-17. [9] VILLALON-LETELIER F, BROOKS A G, SAUNDERS P M, et al. Host cell restriction factors that limit influenza A infection[J]. Viruses, 2017, 9(12): 376. [10] WALTER R, SHLANK H, GLASS J D, et al. Leucylglycinamide released from oxytocin by human uterine enzyme[J]. Science, 1971, 173(3999): 827-829. [11] TARASZKIEWICZ A, SINKIEWICZ I, SOMMER A, et al. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins[J]. Crit Rev Food Sci Nutr, 2024, 64(19):6567-6580. [12] DUNAEVSKY Y E, TERESHCHENKOVA V F, OPPERT B, et al. Human proline specific peptidases: A comprehensive analysis[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(9): 129636. [13] GOOSSENS F, DE MEESTER I, VANHOOF G, et al. Distribution of prolyl oligopeptidase in human peripheral tissues and body fluids[J]. Eur J Clin Chem Clin Biochem, 1996, 34(1): 17-22. [14] REA D, HAZELL C, ANDREWS N W, et al. Expression, purification and preliminary crystallographic analysis of oligopeptidase B from Trypanosoma brucei[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2006, 62(Pt 8): 808-810. [15] FÜLÖP V, BÖCSKEI Z, POLGÁR L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis[J]. Cell, 1998, 94(2): 161-170. [16] FÜLÖP V, SZELTNER Z, POLGÁR L. Catalysis of serine oligopeptidases is controlled by a gating filter mechanism[J]. EMBO Rep, 2000, 1(3): 277-281. [17] SZELTNER Z, POLGÁR L. Structure, function and biological relevance of prolyl oligopeptidase[J]. Curr Protein Pept Sci, 2008, 9(1): 96-107. [18] SVARCBAHS R, JULKU U, KILPELAINEN T, et al. New tricks of prolyl oligopeptidase inhibitors-A common drug therapy for several neurodegenerative diseases[J]. Biochem Pharmacol, 2019, 161: 113-120. [19] GRUBMAN M J, BAXT B. Foot-and-mouth disease[J]. Clin Microbiol Rev, 2004, 17(2): 465-493. [20] WANG Q, ZHANG Q, ZHENG M, et al. Viral-host interactome analysis reveals chicken STAU2 interacts with non-structural protein 1 and promotes the replication of H5N1 avian influenza virus[J]. Front Immunol, 2021, 12: 590679. [21] MA S, SHI S, XU B, et al. Host serine protease ACOT2 assists DENV proliferation by hydrolyzing viral polyproteins[J]. mSystems, 2024, 9(1): e0097323. [22] ZHANG H, WANG X, QU M, et al. Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication[J]. Autophagy, 2023, 19(11): 2869-2883. [23] 曾宗波,马旭升,罗志宽,等. 程序性细胞死亡因子10抑制Ⅰ型干扰素表达并促进FMDV复制[J]. 畜牧兽医学报, 2021, 52(2): 450-459. ZENG J B, MA X S, LUO Z K, et al. Programmed cell death factor 10 inhibits type I interferon expression and promotes the replication of foot-and-mouth disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 450-459. (in Chinese) [24] ZHU Z, LI W, ZHANG X, et al. Foot-and-mouth disease virus capsid protein VP1 interacts with host ribosomal protein SA to maintain activation of the MAPK signal pathway and promote virus replication[J]. J Virol, 2020, 94(3):e01350-19. [25] JIANG D X, ZHANG J B, LI M T, et al. Prolyl endopeptidase gene disruption attenuates high fat diet-induced nonalcoholic fatty liver disease in mice by improving hepatic steatosis and inflammation[J]. Ann Transl Med, 2020, 8(5): 218. [26] HARWOOD A J. Prolyl oligopeptidase, inositol phosphate signalling and lithium sensitivity[J]. CNS Neurol Disord Drug Targets, 2011, 10(3): 333-339. [27] SCHULZ I, GERHARTZ B, NEUBAUER A, et al. Modulation of inositol 1,4,5-triphosphate concentration by prolyl endopeptidase inhibition[J]. Eur J Biochem, 2002, 269(23): 5813-5820. [28] LIN S Z, WU W J, CHENG Y Q, et al. Prolyl endopeptidase remodels macrophage function as a novel transcriptional coregulator and inhibits fibrosis[J]. Exp Mol Med, 2023, 55(7): 1437-1450. [29] SAKAGUCHI M, MATSUDA T, MATSUMURA E, et al. Prolyl oligopeptidase participates in cell cycle progression in a human neuroblastoma cell line[J]. Biochem Biophys Res Commun, 2011, 409(4): 693-698. [30] SUZUKI K, SAKAGUCHI M, TANAKA S, et al. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells[J]. Biochem Biophys Res Commun, 2014, 443(1): 91-96. [31] TANAKA M, DOHGU S, KOMABAYASHI G, et al. Brain-transportable dipeptides across the blood-brain barrier in mice[J]. Sci Rep, 2019, 9(1): 5769. [32] SVARCBAHS R, JANTTI M, KILPELAINEN T, et al. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A[J]. Pharmacol Res, 2020, 151: 104558. [33] 王姿逸,茹 毅,卢炳州,等. 脯氨酰寡肽酶的研究进展[J]. 中国兽医科学,2025, 55(2): 240-246. WANG J Y, RU Y, LU B Z, et al. Research progress of prolyl endopeptidase[J]. Chinese Veterinary Science, 2025, 55(2): 240-246. (in Chinese) |