畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2112-2122.doi: 10.11843/j.issn.0366-6964.2025.05.012
吴芊卉1(), 张愉1, 张桃妮1, 磨美兰1,2,3,*(
)
收稿日期:
2024-07-22
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
磨美兰
E-mail:2407211038@qq.com;momeilan@gxu.edu.cn
作者简介:
吴芊卉(2000-),女,江西南昌人,硕士,主要从事禽病防治与病原分子生物学研究,E-mail: 2407211038@qq.com
基金资助:
WU Qianhui1(), ZHANG Yu1, ZHANG Taoni1, MO Meilan1,2,3,*(
)
Received:
2024-07-22
Online:
2025-05-23
Published:
2025-05-27
Contact:
MO Meilan
E-mail:2407211038@qq.com;momeilan@gxu.edu.cn
摘要:
冠状病毒严重危害人类及动物健康,其基因组极易发生突变和重组,给冠状病毒病防控带来极大困难和挑战。除了安全高效的疫苗,急需广谱抗病毒药物。针对病毒复制依赖的宿主因子的抗病毒药物具有广谱性和不易产生耐药性的优点。脂筏是位于细胞膜表面的一类特殊脂质微结构域,也是多种病毒入侵宿主细胞的结合位点,在冠状病毒感染过程中起到至关重要的作用。本文就脂筏的结构和功能、冠状病毒入侵及其与脂筏的关联性、脂筏参与冠状病毒感染的研究、脂筏在冠状病毒病防治中应用的最新进展进行综述,旨在为冠状病毒治疗靶点的研发提供方向和参考。
中图分类号:
吴芊卉, 张愉, 张桃妮, 磨美兰. 脂筏参与冠状病毒感染的机制及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2112-2122.
WU Qianhui, ZHANG Yu, ZHANG Taoni, MO Meilan. Research Progress on Mechanism of Lipid Raft Involved in Coronavirus Infection and Its Application[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2112-2122.
表 1
靶向脂筏的抗冠状病毒药物"
靶点 Target | 药物 Drug | 特性 Characteristic |
胆固醇 Cholesterol | 25-羟基胆固醇 25-hydroxycholesterol (25HC) | 1)抑制固醇调节元件结合蛋白2,刺激酰基辅酶A以减少膜脂筏;2)抑制氧化固醇结合蛋白或尼曼匹克C1前体蛋白来损害内体途径,导致病毒无法释放核酸;3)抑制固醇调节元件结合蛋白途径,增加聚糖对内糖苷酶的敏感性来糖基化,从而干扰病毒蛋白的前酰化 |
α-环糊精 α-cyclodextrin | 单独或联合羟基酪醇与S蛋白及ACE2相互作用,降低SARS-CoV-2内吞作用效率 | |
甲基-β-环糊精 Methyl-β-cyclodextrin | 可在早期阶段阻断多种人类和动物病毒感染,包括SARS-CoV和SARS-CoV-2 | |
羟丙基-β-环糊精 Hydroxypropyl-β-cyclodextrin | 是用作SARS-CoV-2预防剂的候选药物 | |
羟基酪醇 Hydroxytyrosol | 具有抗病毒特性 | |
美伐他汀 Mevastatin | 消耗胆固醇,破坏脂筏 | |
菲利平 Filipin | 消耗胆固醇,破坏脂筏 | |
神经节苷脂 Ganglioside | 氯喹 Chloroquine | 已被证明在体外有效抑制SARS-CoV-2 |
羟氯喹 Hydroxychloroquine | 可识别呼吸道上皮细胞表达的神经节苷脂,并竞争性阻断SARS-CoV-2与这些细胞的结合 | |
鞘糖脂 Glycosphingolipid | 苯基棕榈酰胺吗啡丙醇(PPMP) DL-threo-1-phenyl-2- palmitoylamino-3- morpholino-1-propanol | 在体外,用PPMP(鞘糖脂合酶抑制剂)进行可逆处理,暂时破坏脂筏足以防止病毒感染细胞 |
N-末端结构域 NTD | 阿奇霉素 Azithromycin | 与SARS-CoV-2蛋白NTD的神经节苷脂结合结构域相互作用阻断S蛋白与脂筏的结合;与羟氯喹在体外预防SARS-CoV-2感染具有协同作用 |
1 |
SIDDELL S , WEGE H , TER MEULEN V . The biology of coronaviruses[J]. J Gen Virol, 1983, 64 (4): 761- 776.
doi: 10.1099/0022-1317-64-4-761 |
2 |
ZHOU P , YANG X L , WANG X G , et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579 (7798): 270- 273.
doi: 10.1038/s41586-020-2012-7 |
3 |
FURUKAWA K , OHMI Y , HAMAMURA K , et al. Signaling domains of cancer-associated glycolipids[J]. Glycoconj, 2022, 39 (2): 145- 155.
doi: 10.1007/s10719-022-10051-1 |
4 |
WANG H Y , BHARTI D , LEVENTAL I . Membrane heterogeneity beyond the plasma membrane[J]. Front Cell Dev Biol, 2020, 8, 580814.
doi: 10.3389/fcell.2020.580814 |
5 |
PRALLE A , KELLER P , FLORIN E L , et al. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells[J]. J Cell Biol, 2000, 148 (5): 997- 1008.
doi: 10.1083/jcb.148.5.997 |
6 | SAPOŃ K , MANŃKA R , JANAS T , et al. The role of lipid rafts in vesicle formation[J]. J Cell Biol, 2023, 136 (9): jcs260887. |
7 |
TRYBUS M , HRYNIEWICZ-JANKOWSKA A , WóJTOWICZ K , et al. EFR3A: a new raft domain organizing protein?[J]. Cell Mol Biol Lett, 2023, 28 (1): 86.
doi: 10.1186/s11658-023-00497-y |
8 |
HIRANO K , KINOSHITA M , MATSUMORI N . Impact of sphingomyelin acyl chain heterogeneity upon properties of raft-like membranes[J]. Biochim Biophys Acta Biomembr, 2022, 1864 (12): 184036.
doi: 10.1016/j.bbamem.2022.184036 |
9 |
LEVENTAL I , LYMAN E . Regulation of membrane protein structure and function by their lipid nano-environment[J]. Nat Rev Mol Cell Biol, 2023, 24 (2): 107- 122.
doi: 10.1038/s41580-022-00524-4 |
10 |
CONTRERAS F X , ERNST A M , HABERKANT P , et al. Molecular recognition of a single sphingolipid species by a protein 's transmembrane domain[J]. Nature, 2012, 481 (7382): 525- 529.
doi: 10.1038/nature10742 |
11 |
SAPOŃ K , JANAS T , SIKORSKI A F , et al. Polysialic acid chains exhibit enhanced affinity for ordered regions of membranes[J]. Biochim Biophys Acta Biomembr, 2019, 1861 (1): 245- 255.
doi: 10.1016/j.bbamem.2018.07.008 |
12 |
CHOI K S , AIZAKI H , LAI M M C . Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release[J]. J Virol, 2005, 79 (15): 9862- 9871.
doi: 10.1128/JVI.79.15.9862-9871.2005 |
13 |
SCHEIFFELE P , ROTH M G , SIMONS K . Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain[J]. EMBO J, 1997, 16 (18): 5501- 5508.
doi: 10.1093/emboj/16.18.5501 |
14 |
PICKL W F , PIMENTEL-MUIÑOS F X , SEED B . Lipid rafts and pseudotyping[J]. J Virol, 2001, 75 (15): 7175- 7183.
doi: 10.1128/JVI.75.15.7175-7183.2001 |
15 |
BAVARI S , BOSIO C M , WIEGAND E , et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses[J]. J Exp Med, 2002, 195 (5): 593- 602.
doi: 10.1084/jem.20011500 |
16 |
YANG Q , ZHANG Q , TANG J , et al. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection[J]. Virology, 2015, 484, 170- 180.
doi: 10.1016/j.virol.2015.06.005 |
17 |
CHAZAL N , GERLIER D . Virus entry, assembly, budding, and membrane rafts[J]. Microbiol Mol Biol Rev, 2003, 67 (2): 226- 237.
doi: 10.1128/MMBR.67.2.226-237.2003 |
18 |
MAÑES S , DEL REAL G , MARTÍNEZ-A C . Pathogens: raft hijackers[J]. Nat Rev Immunol, 2003, 3 (7): 557- 568.
doi: 10.1038/nri1129 |
19 | ONO A , FREED E O . Role of lipid rafts in virus replication[J]. Adv Virus Res, 2005, 64, 311- 358. |
20 |
VERMA D K , GUPTA D , LAL S K . Host lipid rafts play a major role in binding and endocytosis of influenza a virus[J]. Viruses, 2018, 10 (11): 650.
doi: 10.3390/v10110650 |
21 | AZZAZ F , YAHI N , DI SCALA C , et al. Ganglioside binding domains in proteins: physiological and pathological mechanisms[J]. Adv Protein Chem Struct Biol, 2022, 128, 289- 324. |
22 |
FANTINI J , YAHI N , AZZAZ F , et al. Structural dynamics of SARS-CoV-2 variants: a health monitoring strategy for anticipating Covid-19 outbreaks[J]. J Infect, 2021, 83 (2): 197- 206.
doi: 10.1016/j.jinf.2021.06.001 |
23 |
SUZUKI Y . [Variation of influenza viruses and their recognition of the receptor sialo-sugar chains][J]. Yakugaku Zasshi, 1993, 113 (8): 556- 578.
doi: 10.1248/yakushi1947.113.8_556 |
24 |
MARKWELL M A , SVENNERHOLM L , PAULSON J C . Specific gangliosides function as host cell receptors for Sendai virus[J]. Proc Natl Acad Sci U S A, 1981, 78 (9): 5406- 5410.
doi: 10.1073/pnas.78.9.5406 |
25 |
CAMPANERO-RHODES M A , SMITH A , CHAI W G , et al. N-glycolyl GM1 ganglioside as a receptor for simian virus 40[J]. J Virol, 2007, 81 (23): 12846- 12858.
doi: 10.1128/JVI.01311-07 |
26 |
MAGINNIS M S . Virus-receptor interactions: the key to cellular invasion[J]. J Mol Biol, 2018, 430 (17): 2590- 2611.
doi: 10.1016/j.jmb.2018.06.024 |
27 |
ROLSMA M D , KUHLENSCHMIDT T B , GELBERG H B , et al. Structure and function of a ganglioside receptor for porcine rotavirus[J]. J Virol, 1998, 72 (11): 9079- 9091.
doi: 10.1128/JVI.72.11.9079-9091.1998 |
28 |
HAMMACHE D , YAHI N , MARESCA M , et al. Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3)[J]. J Virol, 1999, 73 (6): 5244- 5248.
doi: 10.1128/JVI.73.6.5244-5248.1999 |
29 |
FANTINI J , CHAHINIAN H , YAHI N . Convergent evolution dynamics of SARS-CoV-2 and HIV surface envelope glycoproteins driven by host cell surface receptors and lipid rafts: lessons for the future[J]. Int J Mol Sci, 2023, 24 (3): 1923.
doi: 10.3390/ijms24031923 |
30 |
CHAN J F W , KOK K H , ZHU Z , et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9 (1): 221- 236.
doi: 10.1080/22221751.2020.1719902 |
31 | 鲁丹, 方一泰, 罗德炎, 等. 外泌体参与新冠病毒感染的机制及其应用的研究进展[J]. 病毒学报, 2024, 40 (1): 160- 168. |
LU D , FANG Y T , LUO D Y , et al. Research progress on the functions of exosomes during SARS-CoV-2 infection, diagnosis, treatment and prophylaxis[J]. Chinese Journal of Virology, 2024, 40 (1): 160- 168. | |
32 |
LI X W , ZHU W H , FAN M Y , et al. Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification[J]. Comput Struct Biotechnol J, 2021, 19, 1933- 1943.
doi: 10.1016/j.csbj.2021.04.001 |
33 |
KHATTAB E S A E H , RAGAB A , ABOL-FTOUH M A , et al. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins[J]. J Biomol Struct Dyn, 2022, 40 (23): 13291- 13309.
doi: 10.1080/07391102.2021.1989036 |
34 | 孙亚娟, 张达, 汤傲星, 等. α属冠状病毒入侵宿主所需宿主因子研究进展[J]. 病毒学报, 2024, 40 (1): 215- 224. |
SUN Y J , ZHANG D , TANG A X , et al. Research progress on host factor required of alpha-coronavirus invasion[J]. Chinese Journal of Virology, 2024, 40 (1): 215- 224. | |
35 |
FANTINI J , AZZAZ F , CHAHINIAN H , et al. Electrostatic surface potential as a key parameter in virus transmission and evolution: how to manage future virus pandemics in the post-COVID-19 era[J]. Viruses, 2023, 15 (2): 284.
doi: 10.3390/v15020284 |
36 |
WANG H L , YANG P , LIU K T , et al. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway[J]. Cell Res, 2008, 18 (2): 290- 301.
doi: 10.1038/cr.2008.15 |
37 |
CARONI P . New EMBO memberserreview: actin cytoskeleton regulation through modulation of PI(4, 5)P(2) rafts[J]. EMBO J, 2001, 20 (16): 4332- 4336.
doi: 10.1093/emboj/20.16.4332 |
38 |
CUI J , LI F , SHI Z L . Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17 (3): 181- 192.
doi: 10.1038/s41579-018-0118-9 |
39 |
LEDNICKY J A , TAGLIAMONTE M S , WHITE S K , et al. Independent infections of porcine deltacoronavirus among Haitian children[J]. Nature, 2021, 600 (7887): 133- 137.
doi: 10.1038/s41586-021-04111-z |
40 |
SEYRAN M , TAKAYAMA K , UVERSKY V N , et al. The structural basis of accelerated host cell entry by SARS-CoV-2[J]. FEBS J, 2021, 288 (17): 5010- 5020.
doi: 10.1111/febs.15651 |
41 |
SUN X L . The role of cell surface sialic acids for SARS-CoV-2 infection[J]. Glycobiology, 2021, 31 (10): 1245- 1253.
doi: 10.1093/glycob/cwab032 |
42 |
FANTINI J , CHAHINIAN H , YAHI N . Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19[J]. Biochem Biophys Res Commun, 2021, 538, 132- 136.
doi: 10.1016/j.bbrc.2020.10.015 |
43 |
BAKILLAH A , HEJJI F A , ALMASAUD A , et al. Lipid raft integrity and cellular cholesterol homeostasis are critical for SARS-CoV-2 entry into cells[J]. Nutrients, 2022, 14 (16): 3417.
doi: 10.3390/nu14163417 |
44 |
FANTINI J , CHAHINIAN H , YAHI N . A vaccine strategy based on the identification of an annular ganglioside binding motif in monkeypox virus protein E8L[J]. Viruses, 2022, 14 (11): 2531.
doi: 10.3390/v14112531 |
45 |
DARWISH S , LIU L P , ROBINSON T O , et al. COVID-19 plasma extracellular vesicles increase the density of lipid rafts in human small airway epithelial cells[J]. Int J Mol Sci, 2023, 24 (2): 1654.
doi: 10.3390/ijms24021654 |
46 |
LAN J , GE J , YU J , et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581 (7807): 215- 220.
doi: 10.1038/s41586-020-2180-5 |
47 |
PALACIOS-RÁPALO S N , DE JESÚS-GONZÁLEZ L A , CORDERO-RIVERA C D , et al. Cholesterol-rich lipid rafts as platforms for SARS-CoV-2 entry[J]. Front Immunol, 2021, 12, 796855.
doi: 10.3389/fimmu.2021.796855 |
48 |
FANTINI J , DI SCALA C , CHAHINIAN H , et al. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection[J]. Int J Antimicrob Agents, 2020, 55 (5): 105960.
doi: 10.1016/j.ijantimicag.2020.105960 |
49 |
PAK A J , YU A , KE Z L , et al. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core[J]. Nat Commun, 2022, 13 (1): 1002.
doi: 10.1038/s41467-022-28654-5 |
50 |
THORP E B , GALLAGHER T M . Requirements for CEACAMs and cholesterol during murine coronavirus cell entry[J]. J Virol, 2004, 78 (6): 2682- 2692.
doi: 10.1128/JVI.78.6.2682-2692.2004 |
51 |
LU Y N , LIU D X , TAM J P . Lipid rafts are involved in SARS-CoV entry into Vero E6 cells[J]. Biochem Biophys Res Commun, 2008, 369 (2): 344- 349.
doi: 10.1016/j.bbrc.2008.02.023 |
52 |
JEFFERS S A , TUSELL S M , GILLIM-ROSS L , et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15748- 15753.
doi: 10.1073/pnas.0403812101 |
53 |
GUO H C , HUANG M , YUAN Q , et al. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain[J]. PLoS One, 2017, 12 (1): e0170123.
doi: 10.1371/journal.pone.0170123 |
54 |
LORIZATE M , KRÄUSSLICH H G . Role of lipids in virus replication[J]. Cold Spring Harb Perspect Biol, 2011, 3 (10): a004820.
doi: 10.1101/cshperspect.a004820 |
55 |
WEI X N , SHE G L , WU T T , et al. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway[J]. Vet Res, 2020, 51 (1): 10.
doi: 10.1186/s13567-020-0739-7 |
56 | PRATELLI A , COLAO V . Role of the lipid rafts in the life cycle of canine coronavirus[J]. J Gen Virol, 2015, 96 (Pt 2): 331- 337. |
57 |
GRAHAM D R M , CHERTOVA E , HILBURN J M , et al. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus withβ-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts[J]. J Virol, 2003, 77 (15): 8237- 8248.
doi: 10.1128/JVI.77.15.8237-8248.2003 |
58 |
SVIRIDOV D , MILLER Y I , BALLOUT R A , et al. Targeting lipid rafts-a potential therapy for COVID-19[J]. Front Immunol, 2020, 11, 574508.
doi: 10.3389/fimmu.2020.574508 |
59 |
ALBONI S , SECCO V , PAPOTTI B , et al. Hydroxypropyl-β-cyclodextrin depletes membrane cholesterol and inhibits SARS-CoV-2 entry into HEK293T-ACEhi cells[J]. Pathogens, 2023, 12 (5): 647.
doi: 10.3390/pathogens12050647 |
60 |
MAO S J , REN J , XU Y , et al. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: disturbing cholesterol homeostasis and post-translational modification of proteins[J]. Eur J Pharmacol, 2022, 926, 175033.
doi: 10.1016/j.ejphar.2022.175033 |
61 | PAOLACCI S , KIANI A K , SHREE P , et al. Scoping review on the role and interactions of hydroxytyrosol and alpha-cyclodextrin in lipid-raft-mediated endocytosis of SARS-CoV-2 and bioinformatic molecular docking studies[J]. Eur Rev Med Pharmacol Sci, 2021, 25 (1 Suppl): 90- 100. |
62 |
WANG Y Y , ZHANG Y Y , ZHANG C C , et al. Cholesterol-rich lipid rafts in the cellular membrane play an essential role in avian reovirus replication[J]. Front Microbiol, 2020, 11, 597794.
doi: 10.3389/fmicb.2020.597794 |
63 |
WANG N , HAN S L , LIU R , et al. Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus[J]. Phytomedicine, 2020, 79, 153333.
doi: 10.1016/j.phymed.2020.153333 |
64 |
WANG M L , CAO R Y , ZHANG L K , et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Res, 2020, 30 (3): 269- 271.
doi: 10.1038/s41422-020-0282-0 |
65 |
WANG S B , LI W Y , HUI H , et al. Cholesterol 25-hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol[J]. EMBO J, 2020, 39 (21): e106057.
doi: 10.15252/embj.2020106057 |
66 |
FANTINI J , CHAHINIAN H , YAHI N . Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2:what molecular dynamics studies of virus-host interactions reveal[J]. Int J Antimicrob Agents, 2020, 56 (2): 106020.
doi: 10.1016/j.ijantimicag.2020.106020 |
67 |
ANDREANI J , LE BIDEAU M , DUFLOT I , et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect[J]. Microb Pathog, 2020, 145, 104228.
doi: 10.1016/j.micpath.2020.104228 |
68 |
DAS T , MUKHOPADHYAY C . Identification of possible binding modes of SARS-CoV-2 spike N-terminal domain for ganglioside GM1[J]. Chem Phys Lett, 2023, 812, 140260.
doi: 10.1016/j.cplett.2022.140260 |
69 |
GUÉRIN P , YAHI N , AZZAZ F , et al. Structural dynamics of the SARS-CoV-2 spike protein: a 2-year retrospective analysis of SARS-CoV-2 variants (from alpha to omicron) reveals an early divergence between conserved and variable epitopes[J]. Molecules, 2022, 27 (12): 3851.
doi: 10.3390/molecules27123851 |
70 |
HU J , PENG P , CAO X X , et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron[J]. Cell Mol Immunol, 2022, 19 (2): 293- 295.
doi: 10.1038/s41423-021-00836-z |
71 |
MOULANA A , DUPIC T , PHILLIPS A M , et al. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA. 1[J]. Nat Commun, 2022, 13 (1): 7011.
doi: 10.1038/s41467-022-34506-z |
[1] | 曹丽艳, 孔祥雨, 袁聪, 段月月, 马国祥, 施磊, 张宇, 万颖, 李想通, 王娅婷, 杜煜, 郑海学, 王琦. 猪急性腹泻综合征冠状病毒核衣壳蛋白新型线性B细胞表位的鉴定[J]. 畜牧兽医学报, 2025, 56(4): 1854-1864. |
[2] | 姜慧华, 赵龙, 郭抗抗. HE基因受体结合域变异对牛冠状病毒感染的影响[J]. 畜牧兽医学报, 2025, 56(3): 1336-1343. |
[3] | 赵龙, 林静怡, 豆薇, 徐婷萱, 顾庆云, 高海慧, 李生庆, 郭抗抗. 体外对牛冠状病毒复制具有抑制效应藏药的筛选[J]. 畜牧兽医学报, 2025, 56(2): 826-838. |
[4] | 曾苗苗, 杨小曼, 张鑫, 刘大凯, 时洪艳, 张记宇, 张燎原, 陈建飞, 冯廷帅, 李修文, 石达, 冯力. 猪急性腹泻综合征冠状病毒N蛋白间接ELISA抗体检测方法的建立及初步应用[J]. 畜牧兽医学报, 2025, 56(1): 319-326. |
[5] | 班玛王清, 陈曦, 岳怡, 苏玉蓉, 岳华, 汤承. 一株牛呼吸道冠状病毒的分离鉴定及部分生物学特征[J]. 畜牧兽医学报, 2024, 55(7): 3094-3104. |
[6] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[7] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. |
[8] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[9] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[10] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[11] | 刘强, 牛小霞, 方敏, 刘艳玲, 高辉, 陈吉祥, 加华才让, 张思浓, 李勇. 牛冠状病毒刺突蛋白研究进展[J]. 畜牧兽医学报, 2024, 55(3): 944-956. |
[12] | 喻琦胜, 朱庆, 周群, 宋鑫, 张家祺, 陈涛云, 徐林, 张朝辉, 张斌. 杆状病毒表达系统表达BCoV纤突蛋白及其对小鼠的免疫原性[J]. 畜牧兽医学报, 2024, 55(2): 640-648. |
[13] | 李思远, 付新成, 袁雪松, 毛立, 蔡旭航, 孙心如, 黄金, 谢玲玲, 王府, 周华, 张琪, 李基棕, 李彬. 河北省廊坊市牛主要病毒性腹泻病原感染状况检测及牛冠状病毒演化分析[J]. 畜牧兽医学报, 2024, 55(2): 649-659. |
[14] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[15] | 吕岱玥, 陈延飞, 翟天舒, 曹胜波, 薛青红. 新发病毒检测方法与测序技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(12): 5398-5411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||