畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5247-5258.doi: 10.11843/j.issn.0366-6964.2024.11.040
唐瑶(), 王涛, 薛梦晴, 张文芋, 石美, 王鲜忠, 张姣姣*(
)
收稿日期:
2024-01-11
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
张姣姣
E-mail:1264142767@qq.com;zhangjjff@126.com
作者简介:
唐瑶(1997-), 女, 土家族, 重庆人, 硕士生, 主要从事动物生长发育与生殖调控研究, E-mail: 1264142767@qq.com
基金资助:
Yao TANG(), Tao WANG, Mengqing XUE, Wenyu ZHANG, Mei SHI, Xianzhong WANG, Jiaojiao ZHANG*(
)
Received:
2024-01-11
Online:
2024-11-23
Published:
2024-11-30
Contact:
Jiaojiao ZHANG
E-mail:1264142767@qq.com;zhangjjff@126.com
摘要:
噻唑烷二酮(thiazolidinedione,TZD)是一种治疗胰岛素抵抗的口服糖尿病药物,滥用或不当使用TZD对动物和人类的健康具有不良影响。本研究探讨了TZD对健康雏鸡生长和代谢的影响以及这一过程的潜在机制。80只6日龄雏鸡分为对照组(雌雄各20只)、试验组(雌雄各20只),对照组的鸡不灌服TZD,试验组的鸡连续14 d每日灌服25 mg·(kg·d)-1TZD,检测雏鸡的生长情况;利用生化试剂盒检测腺嘌呤核苷三磷酸(ATP)和脂联素水平、生长代谢相关激素浓度、线粒体功能;通过RT-PCR和蛋白质印迹法检测调节细胞代谢和增殖相关基因的mRNA和蛋白质水平。结果发现,TZD显著降低了雏鸡的平均日增重以及血清ATP、胰岛素(insulin, INS)、生长激素(growth hormone, GH)和胰岛素样生长因子1(insulin-like growth factor 1, IGF1)的水平(P < 0.05),而提高了脂联素和胰岛素样生长因子结合蛋白2(IGFBP2)的水平(P < 0.05)。TZD还降低了雏鸡肝、肾和肌肉的ATP水平及线粒体酶活性(P < 0.05)。此外,TZD的摄入使雏鸡脂联素及其受体、AMP活化蛋白激酶α2(AMPKα2)、p21和p27的mRNA及蛋白表达增强(P < 0.05),而INS及其受体、IGF1及其受体、磷脂酰肌醇-3-激酶(PI3K)、AKT、哺乳动物雷帕霉素靶蛋白(mTOR)、细胞周期蛋白依赖性激酶2(CDK2)和细胞周期蛋白E1(cyclin E1)的mRNA和蛋白表达受到抑制(P < 0.05)。TZD通过脂联素介导的AMPK信号通路降低了雏鸡生长代谢相关激素水平和线粒体功能,该信号通路抑制其下游PI3K/AKT/mTOR,进一步导致p21/p27表达增加以及CDK2/Cyclin E1表达降低,从而抑制雏鸡生长和代谢组织中的细胞增殖。综上表明,TZD通过调节脂联素介导的AMPK信号通路对鸡的生长产生不利影响,这为临床实践与畜禽生产中避免滥用或不当使用TZD提供了一定的理论依据。
中图分类号:
唐瑶, 王涛, 薛梦晴, 张文芋, 石美, 王鲜忠, 张姣姣. 噻唑烷二酮通过脂联素介导的AMPK信号通路抑制鸡的生长[J]. 畜牧兽医学报, 2024, 55(11): 5247-5258.
Yao TANG, Tao WANG, Mengqing XUE, Wenyu ZHANG, Mei SHI, Xianzhong WANG, Jiaojiao ZHANG. Thiazolidinedione Inhibits Chicken Growth via Adiponectin-mediated AMPK Signaling Pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5247-5258.
表 1
RT-PCR引物序列"
基因 Gene | 序列号 Sequence number | 序列位置 Sequence position | 序列长度/bp Product length | 退火温度/℃ Annealing temperature | 序列(5′→3′) Sequence |
β-actin | NM_205518.1 | 625-818 | 194 | 58 | F: GTGCGTGACATCAAGGAGAAGC R: CCACAGGACTCCATACCCAAGA |
ADIPOQ | AY523637.1 | 309-473 | 165 | 58 | F: TTCCTCCTTTGCTCACTGCT R: TCCATCTTTTCCATCCTTGC |
ADIPOR1 | NM_001031027 | 280-523 | 244 | 57 | F: GTGATCCCCTACGATGTGCT R: TCCCAAACACAACCTTCTCC |
ADIPOR2 | NM_001007854 | 711-915 | 205 | 57 | F: TGTGCAGGAGAAAGTGGTTG R: AGGCTGAGGGTTGCAGTAGA |
AMPKα2 | NM_001039605.1 | 726-943 | 218 | 57 | F: GGAGGCGTGTTTTACATCCC R: AACTTCTCACAGACCTCCCG |
mTOR | XM_417614.4 | 119-309 | 191 | 57 | F: TGAAGGGGTCAAGGCAATCC R: GGCGAGCAGTGGTTGTGGAT |
IGF1 | NM_001004384.2 | 188-316 | 129 | 58 | F: AGTTCGTATGTGGAGACAGAGGC R: CCAGCCTCCTCAGGTCACAAC |
IGF1R | NM_205032.1 | 2 961-3 114 | 154 | 57 | F: TTGTGCTCCCCATTGCTTTC R: GGAACGTACACATCCGAAGC |
INS | NM_205222 | 126-308 | 183 | 59 | F: CACTGCCTCTTCTGGCTCTC R: GCAAGGGACTGCTCACTAGG |
INSR | XM_001233398 | 2 303-2 462 | 160 | 57 | F: TGAGAGTGCAGAGGAGCAGA R: GGCACTGACATAAGCTGCAA |
PIK3CA | NM_001004410 | 3 006-3 155 | 150 | 57 | F: AACATCTGGCAAAACCAAGG R: CTGCAATGCTCCCTTTAAGC |
AKT1 | NM_205055.1 | 1 156-1 328 | 173 | 57 | F: AACGGAGGGGAGTTGTTTTT R: ATGTGCCCGTCTTTATCCAG |
p21 | NM_204396 | 530-684 | 155 | 58 | F: TTTCCCTGCCCTGTACTGTC R: AGTCCTCCTCAGTCCCTTCC |
p27 | NM_204256.2 | 922-1 102 | 181 | 58 | F: AGGCCGAAAGACTGATGTTG R: CGATTTCTTGGGTGTTTGCT |
CDK2 | NM_001199857.1 | 386-562 | 177 | 58 | F: AACCCCAGAACCTCCTCATC R: TCCAGATGTCCACAGCAGTC |
Cyclin E1 | NM_001031358.1 | 1 481-1 642 | 162 | 58 | F: CGCCAGCCACTTAAAAGAAC R: TGTCAACAGGGGACAGCATA |
表 2
一抗和二抗及其各自的稀释度"
抗体 Antibody | 目标蛋白 Target | 抗体名称 Name of antibody | 来源 Source and reference | 种属;克隆性 Species raised in; clonality | 稀释度 Dilution used |
一抗 Primary antibodies | p-AMPKα2 | Anti-phospho-AMPK alpha2 (Thr172) | Bioss Antibodies Inc., Woburn, MA, USA | Rabbit; polyclonal | 1∶300 |
AMPKα2 | Anti-AMPK alpha2 | Abcam, Cambridge, MA, USA | Rabbit; polyclonal | 1∶500 | |
p-mTOR | Anti-mTOR (phosphor S2448) | Abcam | Rabbit; monoclonal | 1∶1 000 | |
mTOR | Anti-mTOR | Abcam | Rabbit; polyclonal | 1∶1 000 | |
Adiponectin | Anti-Adiponectin | Abcam | Rabbit; polyclonal | 1∶300 | |
IGF1R | Anti-IGF1R | Bioss | Rabbit; polyclonal | 1∶500 | |
INSR | Anti-Insulin Receptor | Bioss | Rabbit; polyclonal | 1∶500 | |
PIK3CA | Anti-PIK3CA | Bioss | Rabbit; polyclonal | 1∶500 | |
AKT1 | Anti-AKT1 | Abcam | Rabbit; polyclonal | 1∶500 | |
p21 | p21 Polyclonal Antibody | Thermo Fisher Scientific, Waltham, MA, USA | Rabbit; polyclonal | 1∶500 | |
p27 | Anti-CDKN1B/p27 KIP 1 | Bioss | Rabbit; polyclonal | 1∶500 | |
CDK2 | Anti-CDK2 | Bioss | Rabbit; polyclonal | 1∶500 | |
Cyclin E1 | Anti-Cyclin E1 | Bioss | Rabbit; polyclonal | 1∶500 | |
Beta-actin | Beta-actin (AC-15) | Santa Cruz Biotechnology, Dallas, Texas, USA | Rabbit; polyclonal | 1∶1 000 | |
二抗 Secondary antibodies | Goat IgG | Anti-rabbit IgG H & L (HRP) | Abcam | Goat; polyclonal | 1∶5 000 |
Goat IgG | Anti-mouse IgG-HRP | Santa Cruz Biotechnology | Goat; polyclonal | 1∶5 000 |
图 1
TZD对鸡生长和相关激素的影响 A. TZD对雏鸡生长情况的影响;ADFI.平均日采食量;AGD.平均日增重;F/G比.饲料/增重比;数据以“$\bar x \pm s$”表示(每组n=40),根据t检验结果,与对照组相比,*.P<0.05;B. 血清ATP水平;C. 血清脂联素水平;D. 血清胰岛素(INS)水平;E. 血清生长激素(GH)、胰岛素样生长因子1(IGF1)和胰岛素样生长因子结合蛋白2(IGFBP2)的水平;数据以“$\bar x \pm s$”表示(每组n=20),根据t检验结果,雌性处理组与雌性对照组相比,*. P<0.05,**. P<0.01;雄性处理组与雄性对照组相比,#. P<0.05,##. P<0.01"
图 3
TZD对雏鸡肝、肾和肌肉生长相关基因mRNA转录水平的影响 A. TZD处理雏鸡肝中脂联素(ADIPOQ)、脂联素受体1(ADIPOQ1)、脂联素受体2(ADIPOR2)、AMP激活蛋白激酶α2(AMPKα2)和哺乳动物雷帕霉素靶蛋白(mTOR)的相对mRNA水平;B. TZD处理雏鸡肝中胰岛素样生长因子1(IGF1)、胰岛素样生长因子1受体(IGF1R)、胰岛素(INS)、胰岛素受体(INSR)、磷脂酰肌醇-4, 5-二磷酸3-激酶催化亚基α(PIK3CA)和AKT丝氨酸/苏氨酸激酶1(AKT1)的相对mRNA水平;C. TZD处理雏鸡肝中p21、p27、细胞周期蛋白依赖性激酶2(CDK2)和细胞周期蛋白E1(Cyclin E1)的相对mRNA水平;D~F和G~I分别是上述基因在肾和肌肉中的相对mRNA水平;数据以“$\bar x \pm s$”表示(每组n=3),根据t检验结果,雌性处理组与雌性对照组相比,*. P<0.05,**. P<0.01;雄性处理组与雄性对照组相比,#. P<0.05,##. P<0.01"
1 |
DATAR S P , BHONDE R R . Modeling chick to assess diabetes pathogenesis and treatment[J]. Rev Diabet Stud, 2011, 8 (2): 245- 253.
doi: 10.1900/RDS.2011.8.245 |
2 |
SWEAZEA K L . Revisiting glucose regulation in birds-a negative model of diabetes complications[J]. Comp Biochem Physiol B Biochem Mol Biol, 2022, 262, 110778.
doi: 10.1016/j.cbpb.2022.110778 |
3 |
YU J G , JAVORSCHI S , HEVENER A L , et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects[J]. Diabetes, 2002, 51 (10): 2968- 2674.
doi: 10.2337/diabetes.51.10.2968 |
4 |
INZUCCHI S E , BERGENSTAL R M , BUSE J B , et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American diabetes association (ADA) and the European association for the study of diabetes (EASD)[J]. Diabetes Care, 2012, 35 (6): 1364- 1379.
doi: 10.2337/dc12-0413 |
5 |
LI Y W , KS N , BYRAN G , et al. Identification of selective PPAR-γ modulators by combining pharmacophore modeling, molecular docking, and adipogenesis assay[J]. Appl Biochem Biotechnol, 2023, 195 (2): 1014- 1041.
doi: 10.1007/s12010-022-04190-2 |
6 |
POURAZADI L , SHARAFI M , TORSHIZI M A K , et al. Modulatory effects of pioglitazone as a ligand for the peroxisome proliferator-activated receptor on semen quality and fertility potential of broiler breeder roosters[J]. Poult Sci, 2022, 101 (5): 101795.
doi: 10.1016/j.psj.2022.101795 |
7 |
JIN C L , ZENG H R , XIE W Y , et al. Dietary supplementation with pioglitazone hydrochloride improves intramuscular fat, fatty acid profile, and antioxidant ability of thigh muscle in yellow-feathered chickens[J]. J Sci Food Agric, 2020, 100 (2): 665- 671.
doi: 10.1002/jsfa.10062 |
8 |
QUARESMA P G F , REENCOBER N , ZANOTTO T M , et al. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/adipoR1/AMPK pathway[J]. Int J Obes (Lond), 2016, 40 (1): 138- 146.
doi: 10.1038/ijo.2015.134 |
9 |
TANYANSKIY D A , SHAVVA V S , DIZHE E B , et al. Adiponectin stimulates apolipoprotein A-1 gene expression in HepG2 cells via AMPK, PPARα, and LXRs signaling mechanisms[J]. Biochemistry (Mosc), 2022, 87 (11): 1252- 1259.
doi: 10.1134/S0006297922110049 |
10 | FANG H , JUDD R L . Adiponectin regulation and function[J]. Compr Physiol, 2018, 8 (3): 1031- 1063. |
11 |
INVERNIZZI M , LIPPI L , FOLLI A , et al. Integrating molecular biomarkers in breast cancer rehabilitation. What is the current evidence?A systematic review of randomized controlled trials[J]. Front Mol Biosci, 2022, 9, 930361.
doi: 10.3389/fmolb.2022.930361 |
12 |
LI X R , ZHANG D Y , VATNER D F , et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice[J]. Proc Natl Acad Sci U S A, 2020, 117 (51): 32584- 32593.
doi: 10.1073/pnas.1922169117 |
13 |
FRANCISCHETTI E A , DEZONNE R S , PEREIRA C M , et al. Insights into the controversial aspects of adiponectin in cardiometabolic disorders[J]. Horm Metab Res, 2020, 52 (10): 695- 707.
doi: 10.1055/a-1239-4349 |
14 |
REIS M , VENEZIANI L P , PORTO F L , et al. Intrathymic somatotropic circuitry: consequences upon thymus involution[J]. Front Immunol, 2023, 14, 1108630.
doi: 10.3389/fimmu.2023.1108630 |
15 |
ORRÙ S , NIGRO E , MANDOLA A , et al. A Functional Interplay between IGF-1 and adiponectin[J]. Int J Mol Sci, 2017, 18 (10): 2145.
doi: 10.3390/ijms18102145 |
16 |
SCHINDLER M , PENDZIALEK M , GRYBEL K J , et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts[J]. Hum Reprod, 2017, 32 (7): 1382- 1392.
doi: 10.1093/humrep/dex087 |
17 |
PARDINA E , FERRER R , BAENA-FUSTEGUERAS J A , et al. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese[J]. Obes Surg, 2010, 20 (5): 623- 632.
doi: 10.1007/s11695-010-0103-5 |
18 |
GUEVARA-AGUIRRE J , ROSENBLOOM A L , GUEVARA A , et al. Divergent metabolic phenotypes in two genetic syndromes of low insulin secretion[J]. Diabetes Res Clin Pract, 2023, 196, 110228.
doi: 10.1016/j.diabres.2022.110228 |
19 |
SATO T , SEGAWA M , SEKINE S , et al. Mild depolarization is involved in troglitazone-induced liver mitochondrial membrane permeability transition via mitochondrial iPLA2 activation[J]. J Toxicol Sci, 2019, 44 (11): 811- 820.
doi: 10.2131/jts.44.811 |
20 |
WU S N , ZOU M H . AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21 (14): 4987.
doi: 10.3390/ijms21144987 |
21 |
WANG S T , HO H J , LIN J T , et al. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells[J]. Cell Death Dis, 2017, 8 (2): e2626.
doi: 10.1038/cddis.2016.472 |
22 |
JOUBERT R , MÉTAYER COUSTARD S , SWENNEN Q , et al. The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken[J]. Domest Anim Endocrinol, 2010, 38 (2): 115- 125.
doi: 10.1016/j.domaniend.2009.08.002 |
23 |
YADAV U , VANJARI Y , LAXMIKESHAV K , et al. Synthesis and in vitro cytotoxicity evaluation of phenanthrene linked 2, 4- thiazolidinediones as potential anticancer agents[J]. Anticancer Agents Med Chem, 2021, 21 (9): 1127- 1140.
doi: 10.2174/1871520620666200714142931 |
24 |
ZHANG J J , LI Y Q , SHI M , et al. 17β-estradiol rescues the damage of thiazolidinedione on chicken Sertoli cell proliferation via adiponectin[J]. Ecotoxicol Environ Saf, 2022, 233, 113308.
doi: 10.1016/j.ecoenv.2022.113308 |
25 |
GIANNINI S , SERIO M , GALLI A . Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity[J]. J Endocrinol Invest, 2004, 27 (10): 982- 991.
doi: 10.1007/BF03347546 |
26 |
HU X Y , LIU L , SONG Z G , et al. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens[J]. Comp Biochem Physiol B Biochem Mol Biol, 2016, 191, 146- 154.
doi: 10.1016/j.cbpb.2015.10.007 |
27 |
ZHANG J J , WANG X Z , LUONG DO H , et al. MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation[J]. Sci Rep, 2018, 8 (1): 8761.
doi: 10.1038/s41598-018-27123-8 |
28 |
JIAO Z J , YI W , RONG Y W , et al. MicroRNA-1285 regulates 17β-estradiol-inhibited immature boar sertoli cell proliferation via adenosine monophosphate-activated protein kinase activation[J]. Endocrinology, 2015, 156 (11): 4059- 4070.
doi: 10.1210/en.2014-1982 |
29 |
MACVANIN M , GLUVIC Z , RADOVANOVIC J , et al. New insights on the cardiovascular effects of IGF-1[J]. Front Endocrinol (Lausanne), 2023, 14, 1142644.
doi: 10.3389/fendo.2023.1142644 |
30 |
BIONDO L A , TEIXEIRA A A S , DE O S FERREIRA K C , et al. Pharmacological strategies for insulin sensitivity in obesity and cancer: thiazolidinediones and metformin[J]. Curr Pharm Des, 2020, 26 (9): 932- 945.
doi: 10.2174/1381612826666200122124116 |
31 |
SEGAWA M , SEKINE S , SATO T , et al. Increased susceptibility to troglitazone-induced mitochondrial permeability transition in type 2 diabetes mellitus model rat[J]. J Toxicol Sci, 2018, 43 (5): 339- 351.
doi: 10.2131/jts.43.339 |
32 | SEYDI E , SERVATI T , SAMIEI F , et al. Toxicity of pioglitazone on mitochondria isolated from brain and heart: an analysis for probable drug-induced neurotoxicity and cardiotoxicity[J]. Drug Res (Stuttg), 2020, 70 (2-3): 112- 118. |
33 |
JIANG Q X , JI A D , LI D C , et al. Mitochondria damage in ambient particulate matter induced cardiotoxicity: roles of PPAR alpha/PGC-1 alpha signaling[J]. Environ Pollut, 2021, 288, 117792.
doi: 10.1016/j.envpol.2021.117792 |
34 |
QI Y B , HU M Y , QIU Y , et al. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET[J]. Toxicol Appl Pharmacol, 2023, 465, 116440.
doi: 10.1016/j.taap.2023.116440 |
35 |
JEON K I , KUMAR A , CALLAN C L , et al. Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype: a new target for treating fibrosis[J]. Invest Ophthalmol Vis Sci, 2023, 64 (13): 36.
doi: 10.1167/iovs.64.13.36 |
36 |
BOVA M P , TAM D , MCMAHON G , et al. Troglitazone induces a rapid drop of mitochondrial membrane potential in liver HepG2 cells[J]. Toxicol Lett, 2005, 155 (1): 41- 50.
doi: 10.1016/j.toxlet.2004.08.009 |
37 |
HU D , WU C Q , LI Z J , et al. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: an in vitro model in mitochondria[J]. Toxicol Appl Pharmacol, 2015, 284 (2): 134- 141.
doi: 10.1016/j.taap.2015.02.018 |
38 |
MANIERI E , HERRERA-MELLE L , MORA A , et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence[J]. J Exp Med, 2019, 216 (5): 1108- 1119.
doi: 10.1084/jem.20181288 |
39 |
GURU B , TAMRAKAR A K , MANJULA S N , et al. Novel dual PPARα/γ agonists protect against liver steatosis and improve insulin sensitivity while avoiding side effects[J]. Eur J Pharmacol, 2022, 935, 175322.
doi: 10.1016/j.ejphar.2022.175322 |
40 |
FRÖHLICH E , MACHICAO F , WAHL R . Action of thiazolidinediones on differentiation, proliferation and apoptosis of normal and transformed thyrocytes in culture[J]. Endocr Relat Cancer, 2005, 12 (2): 291- 303.
doi: 10.1677/erc.1.00973 |
41 | EGGLETON J S I . Thiazolidinediones[M]. Treasure Island: StatPearls Publishing, 2023. |
42 |
BODEN G , ZHANG M J . Recent findings concerning thiazolidinediones in the treatment of diabetes[J]. Expert Opin Investig Drugs, 2006, 15 (3): 243- 250.
doi: 10.1517/13543784.15.3.243 |
43 |
YAMAUCHI T , NIO Y , MAKI T , et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J]. Nat Mede, 2007, 13 (3): 332- 339.
doi: 10.1038/nm1557 |
44 | SUGIYAMA M , TAKAHASHI H , HOSONO K , et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway[J]. Int J Oncol, 2009, 34 (2): 339- 44. |
45 |
QI H P , LIU Y , LI S Z , et al. Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via p21/p27 and miR-29 family pathways in rats[J]. Mol Ther Nucleic Acids, 2017, 8, 277- 290.
doi: 10.1016/j.omtn.2017.07.004 |
46 |
SINAGRA T , TAMBURELLA A , URSO V , et al. Reversible inhibition of vasoconstriction by thiazolidinediones related to PI3K/Akt inhibition in vascular smooth muscle cells[J]. Biochem Pharmacol, 2013, 85 (4): 551- 559.
doi: 10.1016/j.bcp.2012.11.013 |
47 |
STRELECKIENE G , INCIURAITE R , JUZENAS S , et al. miR-20b and miR-451a are involved in gastric carcinogenesis through the PI3K/AKT/mTOR signaling pathway: data from gastric cancer patients, cell lines and ins-gas mouse model[J]. Int J Mol Sci, 2020, 21 (3): 877.
doi: 10.3390/ijms21030877 |
48 |
ALZAHRANI A S . PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside[J]. Seminars in cancer biology, 2019, 59, 125- 132.
doi: 10.1016/j.semcancer.2019.07.009 |
49 | LEE S M , MURATALLA J , SIERRA-CRUZ M , et al. Role of hepatic peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease[J]. J Endocrinol, 2023, 257 (1): e220155. |
50 | COUGHLAN K A , VALENTINE R J , RUDERMAN N B , et al. AMPK activation: a therapeutic target for type 2 diabetes?[J]. Diabetes Metab Syndr Obes, 2014, 7, 241- 253. |
51 | QIU H , YANG J K , CHEN C . Influence of insulin on growth hormone secretion, level and growth hormone signalling[J]. Acta Physiol Sin, 2017, 69 (5): 541- 556. |
52 |
YOSHIDA T , DELAFONTAINE P . Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9 (9): 1970.
doi: 10.3390/cells9091970 |
53 |
KUAI M Y , LI Y , SUN X , et al. A novel formula Sang-Tong-Jian improves glycometabolism and ameliorates insulin resistance by activating PI3K/AKT pathway in type 2 diabetic KKAy mice[J]. Biomed Pharmacother, 2016, 84, 1585- 1594.
doi: 10.1016/j.biopha.2016.10.101 |
[1] | 李亚楠, 马天文, 马玉辉, 魏成威. 白果内酯调控AMPK-SIRT3正反馈环路介导的线粒体生物发生改善ATDC5软骨细胞炎性损伤[J]. 畜牧兽医学报, 2024, 55(8): 3714-3724. |
[2] | 李瑶, 贾蕊, 李杰, 滚双宝, 杨巧丽, 王龙龙, 张鹏霞, 高小莉, 黄晓宇. 低温对合作猪脂肪组织形态、脂代谢相关基因表达和酶活性及AMPK/PGC-1α通路的影响[J]. 畜牧兽医学报, 2024, 55(8): 3418-3426. |
[3] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[4] | 赵慧颖, 余诗强, 赵玉超, 蒋林树. 肝脏-脂肪组织代谢串扰在围产期奶牛脂肪肝发展中的作用机制[J]. 畜牧兽医学报, 2023, 54(10): 4105-4116. |
[5] | 朱文俊, 陈兴勇, 刘乐, 刘政权, 赵羽彤, 耿照玉. 番鸭产蛋各期肝脂肪酸组成及AMPK信号通路基因表达研究[J]. 畜牧兽医学报, 2021, 52(9): 2429-2438. |
[6] | 汪棋, 汪长建, 魏宗友, 陆汉希, 姚晓磊, 杨花, 王锋, 张艳丽. AMPK激活剂在绵羊精液冷冻保存中的作用研究[J]. 畜牧兽医学报, 2020, 51(12): 3033-3045. |
[7] | 姚晓磊, 黄欣爱, 肖慎华, 郑临枫, 范丽洁, 金宇月, 刘孜斐, 张艳丽, 王洁, 王锋. 不同发育阶段湖羊生殖器官脂联素受体与睾酮分泌关键基因表达模式及相关性研究[J]. 畜牧兽医学报, 2018, 49(8): 1642-1650. |
[8] | 李戡, 刘文忠, 张瑞鑫, 李倩, 张婷, 秦旭泽, 张建新, 赵俊星. AMPK调控绵羊肌内前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2018, 49(8): 1594-1604. |
[9] | 唐妮, 王书瑶, 齐锦雯, 吴源冰, 李志琼. 脂联素调控脂质代谢的研究进展[J]. 畜牧兽医学报, 2018, 49(12): 2550-2557. |
[10] | 周华金, 胡希怡, 杨家昶, 丁祥文, 王玉, 宋志刚. 热应激对肉仔鸡肝AMPKα1及脂肪代谢相关分子基因表达的影响[J]. 畜牧兽医学报, 2018, 49(1): 102-110. |
[11] | 沈留红,江涛,巫晓峰,姜思汛,肖劲邦,曹随忠,余树民,邓俊良,左之才,彭广能,马晓平,钟志军,任志华,王娅,胡延春. 奶牛胎盘脂联素、瘦素、内脂素与犊牛初生重相关性研究[J]. 畜牧兽医学报, 2017, 48(1): 185-192. |
[12] | 刘霭莎;李岩;胡文锋;吴同山;李加琪;陈真伟;江冠尧;黎立. 猪脂联素球状结构域gAd基因在乳酸乳球菌中的表达[J]. 畜牧兽医学报, 2012, 43(3): 353-357. |
[13] | 杨烨,宋娇,付睿琦,李颖颖,苟钟勇,孙艳发,赵桂苹,文杰. 北京油鸡AMPK基因表达规律及其对肌肉和脂肪细胞内脂肪沉积的影响[J]. 畜牧兽医学报, 2012, 43(11): 1703-1709. |
[14] | 邵康;周杰;吴小雪;舒宝屏;罗联辉;盛晟;张佳;李维新;殷宗俊. 猪睾丸中脂联素受体与LHR、CYP11A1、StAR基因表达的发育变化及其相关性研究[J]. 畜牧兽医学报, 2011, 42(12): 1680-1685. |
[15] | 薛茂云;董飚;张营;郁建锋;孟和;龚道清;顾志良. 鸭脂联素基因全长cDNA的克隆和原核表达的研究[J]. 畜牧兽医学报, 2010, 41(10): 1232-1239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||