[1] |
CÔTÉ-GRAVEL J, MALOUIN F. Symposium review: features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies[J]. J Dairy Sci, 2019, 102(5):4727-4740.
|
[2] |
TAKAMATSU D, HATA E, OSAKI M, et al. Role of SraP in adherence of Staphylococcus aureus to the bovine mammary epithelia[J]. J Vet Med Sci, 2008, 70(7):735-738.
|
[3] |
ROCHE F M, MASSEY R, PEACOCK S J, et al. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences[J]. Microbiology (Reading), 2003, 149(Pt 3):643-654.
|
[4] |
YI S Q, ZHANG X Y, YANG Y L, et al. Immunity induced by Staphylococcus aureus surface protein A was protective against lethal challenge of Staphylococcus aureus in BALB/c mice[J]. Microbiol Immunol, 2012, 56(6):406-410.
|
[5] |
FOSTER T J, GEOGHEGAN J A, GANESH V K, et al. Adhesion, invasion and evasion:the many functions of the surface proteins of Staphylococcus aureus[J]. Nat Rev Microbiol, 2014, 12(1):49-62.
|
[6] |
STRANGER-JONES Y K, BAE T, SCHNEEWIND O. Vaccine assembly from surface proteins of Staphylococcus aureus[J]. Proc Natl Acad Sci U S A, 2006, 103(45):16942-16947.
|
[7] |
GEOGHEGAN J A, FOSTER T J. Cell wall-anchored surface proteins of Staphylococcus aureus:many proteins, multiple functions[J]. Curr Top Microbiol Immunol, 2017, 409:95-120.
|
[8] |
周宏, 李韩平, 姜永强. 金黄色葡萄球菌表面蛋白研究进展[J]. 生物技术通讯, 2004, 15(1):73-75.ZHOU H, LI H P, JIANG Y Q. The progress of Staphylococcus aureus surface proteins[J]. Letters in Biotechnology, 2004, 15(1):73-75. (in Chinese)
|
[9] |
MAZMANIAN S K, TON-THAT H, SCHNEEWIND O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus[J]. Mol Microbiol, 2001, 40(5):1049-1057.
|
[10] |
PEREYRA E A L, PICECH F, RENNA M S, et al. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells[J]. Vet Microbiol, 2016, 183:69-77.
|
[11] |
SANCHEZ C J, SHIVSHANKAR P, STOL K, et al. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms[J]. PLoS Pathog, 2010, 6(8):e1001044.
|
[12] |
MAGRO G, BIFFANI S, MINOZZI G, et al. Virulence genes of S. aureus from dairy cow mastitis and contagiousness risk[J]. Toxins (Basel), 2017, 9(6):195.
|
[13] |
RAMBOARINA S, GARNETT J A, ZHOU M X, et al. Structural insights into serine-rich fimbriae from gram-positive bacteria[J]. J Biol Chem, 2010, 285(42):32446-32457.
|
[14] |
SIEGEL S D, REARDON M E, TON-THAT H. Anchoring of LPXTG-like proteins to the gram-positive cell wall envelope[J]. Curr Top Microbiol Immunol, 2017, 404:159-175.
|
[15] |
FISCHETTI V A. Surface proteins on gram-positive bacteria [J]. Microbiol Spectr, 2019, 7(4): GPP3-0012-2018.doi:10.1128/microbiolspec.GPP3-0012-2018.
|
[16] |
BOWDEN M G, CHEN W, SINGVALL J, et al. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis[J]. Microbiology (Reading), 2005, 151(Pt 5):1453-1464.
|
[17] |
LIZCANO A, SANCHEZ C J, ORIHUELA C J. A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis[J]. Mol Oral Microbiol, 2012, 27(4):257-269.
|
[18] |
PYBURN T M, BENSING B A, XIONG Y Q, et al. A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors[J]. PLoS Pathog, 2011, 7(7):e1002112.
|
[19] |
YANG Y L, QIAN M Y, YI S Q, et al. Monoclonal antibody targeting Staphylococcus aureus Surface Protein A (SasA) protect against Staphylococcus aureus sepsis and peritonitis in mice[J]. PLoS One, 2016, 11(2):e0149460.
|
[20] |
SIBOO I R, CHAMBERS H F, SULLAM P M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets[J]. Infect Immun, 2005, 73(4):2273-2280.
|
[21] |
ZHU L, INOUE K, YOSHIZUMI S, et al. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP[J]. J Bacteriol, 2009, 191(10):3248-3255.
|
[22] |
KUKITA K, KAWADA-MATSUO M, OHO T, et al. Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva[J]. Infect Immun, 2013, 81(6):1870-1879.
|
[23] |
YANG Y L, YU R, YANG X X, et al. Protection against Staphylococcus aureus and tetanus infections by a combined vaccine containing SasA and TeNT-Hc in mice[J]. Mol Med Rep, 2017, 15(4):2369-2373.
|
[24] |
杨益隆. 金黄色葡萄球菌SasA蛋白免疫保护性的研究[D]. 北京:中国人民解放军军事医学科学院, 2016.YANG Y L. Protective immunity of targeting Staphylococcus aureus surface protein A (SasA)[D]. Beijing: Academy of Military Medical Sciences, 2016. (in Chinese)
|
[25] |
CHAVAKIS T, HUSSAIN M, KANSE S M, et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes[J]. Nat Med, 2002, 8(7):687-693.
|
[26] |
丁进东, 彭程, 贺奋义. 奶牛乳房炎金葡菌黏附素亚单位疫苗的基础研究[J]. 畜牧兽医杂志, 2014, 33(3):1-4.DING J D, PENG C, HE F Y. The study of subunit vaccine targeting adhesins of S. aureus induced mastitis in dairy cows[J]. Journal of Animal Science and Veterinary Medicine, 2014, 33(3):1-4. (in Chinese)
|
[27] |
LEONARD A C, PETRIE L E, COX G. Bacterial anti-adhesives: inhibition of Staphylococcus aureus nasal colonization[J]. ACS Infect Dis, 2019, 5(10):1668-1681.
|
[28] |
DEGO O K, VAN DIJK J E, NEDERBRAGT H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review[J]. Vet Q, 2002, 24(4):181-198.
|
[29] |
MCCARTHY A J, LINDSAY J A. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions[J]. BMC Microbiol, 2010, 10:173.
|
[30] |
YANG Y H, JIANG Y L, ZHANG J, et al. Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells[J]. PLoS Pathog, 2014, 10(6):e1004169.
|