畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3792-3801.doi: 10.11843/j.issn.0366-6964.2024.09.005
付红玉(), 李玥, 崔晗, 李玖芝, 许琬雪, 王曦, 樊瑞锋*(
)
收稿日期:
2023-11-06
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
樊瑞锋
E-mail:fhy31415927@163.com;fanruifeng@sdau.edu.cn
作者简介:
付红玉(1998-),女,山东滨州人,硕士,主要从事动物营养代谢病与中毒病研究,E-mail:fhy31415927@163.com
基金资助:
Hongyu FU(), Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN*(
)
Received:
2023-11-06
Online:
2024-09-23
Published:
2024-09-27
Contact:
Ruifeng FAN
E-mail:fhy31415927@163.com;fanruifeng@sdau.edu.cn
摘要:
铁死亡(ferroptosis)是一种铁和脂质过氧化依赖性的程序性死亡方式,触发铁死亡的必要条件是细胞内活性氧物质堆积到致死量。由脂质过氧化反应产生的脂质活性氧会作用于细胞膜上的脂质分子,导致脂质过氧化和膜损伤,因此脂质过氧化是铁死亡的显著特征。长链酯酰辅酶A合成酶4(long-chain acyl-CoA synthetase 4, ACSL4)在调节脂质代谢方面具有关键作用,其主要功能是将多不饱和脂肪酸酯化并插入膜磷脂中,从而加速脂质过氧化的发生并推动铁死亡。ACSL4介导的铁死亡主要受到转录、转录后和翻译后水平上的调控影响,在脂质过氧化依赖性的疾病中发挥着重要作用。本文旨在介绍铁死亡的发生机制,重点阐述了ACSL4受到的上游调控从而介导铁死亡的机制,为研究ACSL4介导铁死亡机制提供理论依据。
中图分类号:
付红玉, 李玥, 崔晗, 李玖芝, 许琬雪, 王曦, 樊瑞锋. 长链酯酰辅酶A合成酶4介导铁死亡的发生机制[J]. 畜牧兽医学报, 2024, 55(9): 3792-3801.
Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801.
1 |
DIXON S J , LEMBERG K M , LAMPRECHT M R , et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072.
doi: 10.1016/j.cell.2012.03.042 |
2 | 石续, 徐世文. 细胞焦亡与人和动物相关疾病的研究进展[J]. 塔里木大学学报, 2023, 35 (3): 1- 11. |
SHI X , XU S W . Research progress of pyroptosis in human and animal-related diseases[J]. Journal of Tarim University, 2023, 35 (3): 1- 11. | |
3 |
CHEN X , LI J B , KANG R , et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17 (9): 2054- 2081.
doi: 10.1080/15548627.2020.1810918 |
4 |
YANG W S , STOCKWELL B R . Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15 (3): 234- 245.
doi: 10.1016/j.chembiol.2008.02.010 |
5 |
LIN Z , LIU J , KANG R , et al. Lipid metabolism in ferroptosis[J]. Adv Biol, 2021, 5 (8): 2100396.
doi: 10.1002/adbi.202100396 |
6 |
ANDERSON C P , SHEN M , EISENSTEIN R S , et al. Mammalian iron metabolism and its control by iron regulatory proteins[J]. Biochim Biophys Acta Mol Cell Res, 2012, 1823 (9): 1468- 1483.
doi: 10.1016/j.bbamcr.2012.05.010 |
7 |
MACKENZIE E L , IWASAKI K , TSUJI Y . Intracellular iron transport and storage: from molecular mechanisms to health implications[J]. Antioxid Redox Signal, 2008, 10 (6): 997- 1030.
doi: 10.1089/ars.2007.1893 |
8 |
HENTZE M W , MUCKENTHALER M U , GALY B , et al. Two to tango: regulation of mammalian iron metabolism[J]. Cell, 2010, 142 (1): 24- 38.
doi: 10.1016/j.cell.2010.06.028 |
9 |
KVHN L C . Iron regulatory proteins and their role in controlling iron metabolism[J]. Metallomics, 2015, 7 (2): 232- 243.
doi: 10.1039/C4MT00164H |
10 |
BOGDAN A R , MIYAZAWA M , HASHIMOTO K , et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease[J]. Trends Biochem Sci, 2016, 41 (3): 274- 286.
doi: 10.1016/j.tibs.2015.11.012 |
11 |
MASALDAN S , CLATWORTHY S A S , GAMELL C , et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14, 100- 115.
doi: 10.1016/j.redox.2017.08.015 |
12 |
SATO M , KUSUMI R , HAMASHIMA S , et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8 (1): 968.
doi: 10.1038/s41598-018-19213-4 |
13 |
ZHAO Y F , LIU X Y , LIANG C , et al. α-lipoic acid alleviated fluoride-induced hepatocyte injury via inhibiting ferroptosis[J]. J Agric Food Chem, 2022, 70 (50): 15962- 15971.
doi: 10.1021/acs.jafc.2c07484 |
14 |
YANG W S , SRIRAMARATNAM R , WELSCH M E , et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156 (1-2): 317- 331.
doi: 10.1016/j.cell.2013.12.010 |
15 |
SUI X , ZHANG R N , LIU S P , et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018, 9, 1371.
doi: 10.3389/fphar.2018.01371 |
16 |
CHEN Y , ZHU G Q , LIU Y , et al. O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer[J]. Cell Signall, 2019, 63, 109384.
doi: 10.1016/j.cellsig.2019.109384 |
17 |
YANG J J , ZHOU Y L , XIE S D , et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer[J]. J Exp Clin Cancer Res, 2021, 40 (1): 206.
doi: 10.1186/s13046-021-02012-7 |
18 |
BRIGELIUS-FLOHÉ R , FLOHÉ L . Regulatory phenomena in the glutathione peroxidase superfamily[J]. Antioxid Redox Signal, 2020, 33 (7): 498- 516.
doi: 10.1089/ars.2019.7905 |
19 |
ILARI S , GIANCOTTI L A , LAURO F , et al. Natural antioxidant control of neuropathic pain—exploring the role of mitochondrial SIRT3 pathway[J]. Antioxidants (Basel), 2020, 9 (11): 1103.
doi: 10.3390/antiox9111103 |
20 |
ZILINYI R , CZOMPA A , CZEGLEDI A , et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy[J]. Molecules, 2018, 23 (5): 1184.
doi: 10.3390/molecules23051184 |
21 |
SONG B , CHA Y N , KO S , et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models[J]. J Clin Investig, 2020, 130 (2): 904- 920.
doi: 10.1172/JCI130767 |
22 |
LIU P F , FENG Y T , LI H W , et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Lett, 2020, 25 (1): 10.
doi: 10.1186/s11658-020-00205-0 |
23 | 张秀娟, 李玲, 叶棋浓. 长链脂酰辅酶A合成酶家族与恶性肿瘤[J]. 中国生物化学与分子生物学报, 2022, 38 (7): 875- 884. |
ZHANG X J , LI L , YE Q N . The long chain acyl-coenzyme a synthetase family and malignant tumors[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38 (7): 875- 884. | |
24 |
KANG M J , FUJINO T , SASANO H , et al. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis[J]. Proc Natl Acad Sci U S A, 1997, 94 (7): 2880- 2884.
doi: 10.1073/pnas.94.7.2880 |
25 |
CHEN J N , JIANG Y Z , CEN W M , et al. Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with intramuscular fat content and backfat thickness in different pig populations[J]. Genet Mol Res, 2014, 13 (3): 6759- 6772.
doi: 10.4238/2014.August.28.20 |
26 |
RUŚĆ A , SIECZKOWSKA H , KRZ CIO E , et al. The association between acyl-CoA synthetase (ACSL4) polymorphism and intramuscular fat content in (Landrace×Yorkshire)×Duroc pigs[J]. Meat Sci, 2011, 89 (4): 440- 443.
doi: 10.1016/j.meatsci.2011.05.008 |
27 |
REN H Y , ZHANG H Y , HUA Z D , et al. ACSL4 directs intramuscular adipogenesis and fatty acid composition in pigs[J]. Animals, 2022, 12 (1): 119.
doi: 10.3390/ani12010119 |
28 |
LI M , ZHANG N , LI J , et al. MiR-23b promotes porcine preadipocyte differentiation via SESN3 and ACSL4[J]. Cells, 2022, 11 (15): 2339.
doi: 10.3390/cells11152339 |
29 | 王群, 孙雨欣, 王海峰. 脂滴表面蛋白perilipin家族在癌症中的研究进展[J]. 昆明医科大学学报, 2023, 44 (8): 139- 144. |
WANG Q , SUN Y X , WANG H F . Research progress of perilipin family of lipid droplet surface proteins in cancer[J]. J Kunming Med Univ, 2023, 44 (8): 139- 144. | |
30 |
GRUBE J , WOITOK M M , MOHS A , et al. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression[J]. Cell Death Dis, 2022, 13 (8): 704.
doi: 10.1038/s41419-022-05137-5 |
31 |
CHEN J R , DING C F , CHEN Y H , et al. ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis[J]. Oncogenesis, 2020, 9 (4): 42.
doi: 10.1038/s41389-020-0226-z |
32 | 罗菲, 任鑫鑫, 罗沙柳, 等. 人ACSL4基因真核表达载体的构建及其生物学功能研究[J]. 军事医学, 2020, 44 (7): 500- 505. |
LUO F , REN X X , LUO S L , et al. Construction of eukaryotic expression vector of human ACSL4 gene and its biological function[J]. Military Medical Sciences, 2020, 44 (7): 500- 505. | |
33 |
FENG J , LU P Z , ZHU G Z , et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma[J]. Acta Pharmacol Sin, 2021, 42 (1): 160- 170.
doi: 10.1038/s41401-020-0439-x |
34 |
LU Y , CHAN Y T , TAN H Y , et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2022, 41 (1): 3.
doi: 10.1186/s13046-021-02208-x |
35 |
KANTOJÄRVI K , KOTALA I , REHNSTRÖM K , et al. Fine mapping of Xq11. 1-q21. 33 and mutation screening of RPS6KA6, ZNF711, ACSL4, DLG3, and IL1RAPL2 for autism spectrum disorders (ASD)[J]. Autism Res, 2011, 4 (3): 228- 233.
doi: 10.1002/aur.187 |
36 |
WANG Y , ZHANG M H , BI R , et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury[J]. Redox Biol, 2022, 51, 102262.
doi: 10.1016/j.redox.2022.102262 |
37 |
KAGAN V E , MAO G W , QU F , et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13 (1): 81- 90.
doi: 10.1038/nchembio.2238 |
38 |
YUAN H , LI X M , ZHANG X Y , et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Bioph Res Commun, 2016, 478 (3): 1338- 1343.
doi: 10.1016/j.bbrc.2016.08.124 |
39 |
KIM J H , LEWIN T M , COLEMAN R A . Expression and characterization of recombinant rat acyl-CoA synthetases 1, 4, and 5[J]. J Biol Chem, 2001, 276 (27): 24667- 24673.
doi: 10.1074/jbc.M010793200 |
40 |
DOLL S , PRONETH B , TYURINA Y Y , et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13 (1): 91- 98.
doi: 10.1038/nchembio.2239 |
41 |
DUAN J J , WANG Z , DUAN R , et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice[J]. Hepatology, 2022, 75 (1): 140- 153.
doi: 10.1002/hep.32148 |
42 | 李磊, 叶泽华, 夏煜琦, 等. ACSL4抑制剂对草酸钙结石致小鼠肾损伤及间质纤维化的影响[J]. 中华实用诊断与治疗杂志, 2023, 37 (10): 999- 1003. |
LI L , YE Z H , XIA Y Q , et al. Effect of ACSL4 inhibitor on calcium oxalate stone-induced renal injury and interstitial fibrosis in mice[J]. Journal of Chinese Practical Diagnosis and Therapy, 2023, 37 (10): 999- 1003. | |
43 |
LI Y , FENG D C , WANG Z Y , et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26 (11): 2284- 2299.
doi: 10.1038/s41418-019-0299-4 |
44 |
ORLANDO U , COOKE M , MACIEL F C , et al. Characterization of the mouse promoter region of the acyl-CoA synthetase 4 gene: Role of Sp1 and CREB[J]. Mol Cell Endocrinol, 2013, 369 (1-2): 15- 26.
doi: 10.1016/j.mce.2013.01.016 |
45 |
HE W , LIN X C , CHEN K Y . Specificity protein 1-mediated ACSL4 transcription promoted the osteoarthritis progression through suppressing the ferroptosis of chondrocytes[J]. J Orthop Surg Res, 2023, 18 (1): 188.
doi: 10.1186/s13018-023-03673-0 |
46 |
CUI Y , ZHANG Y , ZHAO X L , et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain Behav Immun, 2021, 93, 312- 321.
doi: 10.1016/j.bbi.2021.01.003 |
47 | 兰辉宇, 东丽, 郭瑞芳. Hippo信号通路及其在结直肠癌的作用研究进展[J]. 内蒙古医学杂志, 2022, 54 (5): 602- 604. |
LAN H Y , DONG L , GUO R F . Progress in the study of Hippo signalling pathway and its role in colorectal cancer[J]. Inner Mongolia Medical Journal, 2022, 54 (5): 602- 604. | |
48 |
LI L , YE Z H , XIA Y Q , et al. YAP/ACSL4 pathway-mediated ferroptosis promotes renal fibrosis in the presence of kidney stones[J]. Biomedicines, 2023, 11 (10): 2692.
doi: 10.3390/biomedicines11102692 |
49 |
LIAO P , WANG W M , WANG W C , et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell, 2022, 40 (4): 365- 378. e6.
doi: 10.1016/j.ccell.2022.02.003 |
50 |
LIU Y , NIU R , DENG R P , et al. Multi-enzyme Co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism[J]. J Am Chem Soc, 2023, 145 (16): 8965- 8978.
doi: 10.1021/jacs.2c13689 |
51 |
MA L L , LIANG L , ZHOU D , et al. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4[J]. Neoplasma, 2021, 68 (1): 165- 173.
doi: 10.4149/neo_2020_200707N705 |
52 |
QI Z , LIU R H , JU H N , et al. microRNA-130b-3p attenuates septic cardiomyopathy by regulating the AMPK/mTOR signaling pathways and directly targeting ACSL4 against ferroptosis[J]. Int J Biol Sci, 2023, 19 (13): 4223- 4241.
doi: 10.7150/ijbs.82287 |
53 |
SHI L , SONG Z X , LI Y Z , et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis[J]. Am J Transplant, 2023, 23 (1): 11- 25.
doi: 10.1016/j.ajt.2022.09.003 |
54 |
YUAN Y , MEI Z T , QU Z Z , et al. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure[J]. Signal Transduct Target Ther, 2023, 8 (1): 121.
doi: 10.1038/s41392-023-01336-4 |
55 | WU H X , LIU A W . Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer[J]. J Int Med Res, 2021, 49 (3): 300060521996183. |
56 |
SUN Z J , WU J Y , BI Q , et al. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis[J]. Stem Cell Res Ther, 2022, 13 (1): 297.
doi: 10.1186/s13287-022-02986-x |
57 | JIN Z L , GAO W Y , LIAO S J , et al. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis[J]. ASN Neuro, 2021, 13, 1- 14. |
58 |
CHEN B , WANG H R , LV C L , et al. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis[J]. Bioengineered, 2021, 12 (1): 4004- 4015.
doi: 10.1080/21655979.2021.1951070 |
59 |
SUN W X , WU X , YU P , et al. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis[J]. Front Cell Dev Biol, 2022, 10, 672391.
doi: 10.3389/fcell.2022.672391 |
60 | LIU Y , ZHANG Z Y , YANG J , et al. lncRNA ZFAS1 positively facilitates endothelial ferroptosis via miR-7-5p/ACSL4 axis in diabetic retinopathy[J]. Oxid Med Cell Longev, 2022, 2022, 9004738. |
61 |
OU R Y , LU S , WANG L H , et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis[J]. Front Oncol, 2022, 12, 858598.
doi: 10.3389/fonc.2022.858598 |
62 |
MAO R , LIU H . Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4[J]. Bioengineered, 2022, 13 (2): 4063- 4075.
doi: 10.1080/21655979.2022.2032971 |
63 |
WANG W , XU R L , ZHAO H M , et al. CircEXOC5 promotes ferroptosis by enhancing ACSL4 mRNA stability via binding to PTBP1 in sepsis-induced acute lung injury[J]. Immunobiology, 2022, 227 (4): 152219.
doi: 10.1016/j.imbio.2022.152219 |
64 |
ZHANG H L , HU B X , LI Z L , et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J]. Nat Cell Biol, 2022, 24 (1): 88- 98.
doi: 10.1038/s41556-021-00818-3 |
65 |
TUO Q Z , LIU Y , XIANG Z , et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion[J]. Signal Transduct Target Ther, 2022, 7 (1): 59.
doi: 10.1038/s41392-022-00917-z |
66 |
KAN C F K , SINGH A B , STAFFORINI D M , et al. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[J]. J Lipid Res, 2014, 55 (8): 1657- 1667.
doi: 10.1194/jlr.M045971 |
67 |
CHEN C C , YANG Y B , GUO Y G , et al. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer[J]. Cell Death Dis, 2023, 14 (4): 271.
doi: 10.1038/s41419-023-05803-2 |
68 |
YANG H , HU Y R , WENG M Z , et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer[J]. J Adv Res, 2022, 37, 91- 106.
doi: 10.1016/j.jare.2021.10.001 |
69 |
SHAO C J , ZHOU H L , GAO X Z , et al. Downregulation of miR-221-3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1[J]. Trans Oncol, 2023, 32, 101649.
doi: 10.1016/j.tranon.2023.101649 |
70 |
ZOU P L , CHEN Z , HE Q X , et al. Polyphyllin I induces ferroptosis in castration-resistant prostate cancer cells through the ERK/DNMT1/ACSL4 axis[J]. Prostate, 2024, 84 (1): 64- 73.
doi: 10.1002/pros.24626 |
[1] | 章心婷, 邱文粤, 庞晓玥, 苏依曼, 叶嘉莉, 黄健佳, 周水莲, 唐兆新, 王荣梅, 苏荣胜. 积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J]. 畜牧兽医学报, 2024, 55(4): 1787-1799. |
[2] | 王浩, 肖金龙, 沈珏, 赵金刚, 王帅, 刘根, 赵汝, 肖鹏, 高洪. 细胞死亡的新方式——铁死亡与铜死亡[J]. 畜牧兽医学报, 2024, 55(2): 461-470. |
[3] | 毛鹏, 王志浩, 李建基, 崔璐莹, 朱国强, 孟霞, 董俊升, 王亨. 铁死亡在细菌性感染中的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2280-2287. |
[4] | 陈敬宜, 于淼, 张金洋, 樊堃, 杨桂君, 葛铭, 张瑞莉. 铁死亡参与镉暴露鸡肝损伤的研究[J]. 畜牧兽医学报, 2023, 54(2): 787-802. |
[5] | 向益, 张桦, 王利, 魏勇, 俄木曲者. 土曲霉对小鼠肝氧化损伤及铁死亡相关指标的影响[J]. 畜牧兽医学报, 2021, 52(12): 3619-3626. |
[6] | 储小燕, 朱雷, 曹利, 陈晓芳, 李玉, 冯士彬, 吴金节, 王希春. 脱氧雪腐镰刀菌烯醇暴露对断奶仔猪延髓脂质过氧化反应、神经递质及钙稳态的影响[J]. 畜牧兽医学报, 2019, 50(5): 1091-1098. |
[7] | 陈茜;袁慧;谢志辉;郭成志;朱丽;邓思君;鲁银;魏强;易金娥. 三聚氰胺与三聚氰酸对小鼠肾脏损伤及其机理的研究[J]. 畜牧兽医学报, 2010, 41(12): 1614-1621. |
[8] | 刘永祥;刘艳丽;黄炎坤;呙于明. 日粮中添加天门冬氨酸镁对肉仔鸡肝脏和腿肌脂质过氧化状态的影响[J]. 畜牧兽医学报, 2008, 39(10): 1349-1354. |
[9] | 李慧敏;王富民;顾建红;曹学智;冯亚杰;刘宗平. 辛硫磷慢性暴露对大鼠肝脏氧化应激的影响[J]. 畜牧兽医学报, 2007, 38(8): 861-865. |
[10] | 潘家强;孙卫东;谭 勋;李锦春;王小龙. 早期限饲对肉鸡体内脂质过氧化作用和抗氧化酶活性的影响[J]. 畜牧兽医学报, 2005, 36(5): 464-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||