畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2983-2994.doi: 10.11843/j.issn.0366-6964.2024.07.018
马密兰1(), 王琪1, 颜秋1, 李天安1, 赵兴绪1,2,*(
), 张勇1,2
收稿日期:
2023-11-06
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
赵兴绪
E-mail:18419142205@163.com;zhaoxx@gsau.edu.cn
作者简介:
马密兰(1996-),女,甘肃天水人,硕士生,主要从事兽医产科学研究,E-mail: 18419142205@163.com
基金资助:
Milan MA1(), Qi WANG1, Qiu YAN1, Tianan LI1, Xingxu ZHAO1,2,*(
), Yong ZHANG1,2
Received:
2023-11-06
Online:
2024-07-23
Published:
2024-07-24
Contact:
Xingxu ZHAO
E-mail:18419142205@163.com;zhaoxx@gsau.edu.cn
摘要:
旨在探究缺氧诱导基因1C (HIG1 hypoxia inducible domain family member 1C, HIGD1C)对牦牛睾丸支持细胞凋亡的影响。本研究分别选择3头3~6岁龄健康状况良好的公牦牛和隐睾症公牦牛,以其睾丸组织作为研究材料。通过HE染色、牦牛睾丸支持细胞分离培养、间接免疫荧光、RT-qPCR、Western blot、HIGD1C过表达与干扰载体构建及体外细胞转染等技术,探究HIGD1C对牦牛睾丸支持细胞凋亡的调控机制。结果显示:正常睾丸基底膜及间质组织完整,曲细精管、管周肌细胞及支持细胞等排列紧密,隐睾中曲细精管断裂萎缩且HIGD1C在牦牛隐睾组织中转录及蛋白的表达水平极显著于高于正常睾丸组织(P < 0.01);HIGD1C蛋白主要分布在睾丸间质细胞和支持细胞;成功分离培养出牦牛睾丸支持细胞且HIGD1C蛋白定位于原代睾丸支持细胞胞核;HIGD1C过表达支持细胞后,Bcl-2 mRNA表达水平显著上调(P < 0.05),蛋白表达水平极显著上调(P < 0.01),Bax和Caspase-3 mRNA和蛋白表达水平均极显著上调(P < 0.01),流式细胞术结果显示过表达HIGD1C组支持细胞凋亡率极显著上升(P < 0.01);反之,HIGD1C敲除后,Bax、Bcl-2和Caspase-3 mRNA和蛋白表达水平均极显著下调(P < 0.01),流式细胞术结果显示HIGD1C敲除组支持细胞凋亡率极显著下调(P < 0.01)。本研究结果表明:正常睾丸组织结构完整,隐睾间质疏松,且HIGD1C在牦牛隐睾组织中高表达。体外细胞试验表明上调HIGD1C,可以激活促凋亡蛋白,促进牦牛支持细胞凋亡;反之,下调HIGD1C表达水平会抑制支持细胞凋亡。提示HIGD1C参与调控牦牛睾丸支持细胞的凋亡,为揭示牦牛隐睾的发生机制提供了参考。
中图分类号:
马密兰, 王琪, 颜秋, 李天安, 赵兴绪, 张勇. 缺氧诱导基因1C在牦牛隐睾中的表达及其调控机制研究[J]. 畜牧兽医学报, 2024, 55(7): 2983-2994.
Milan MA, Qi WANG, Qiu YAN, Tianan LI, Xingxu ZHAO, Yong ZHANG. Expression of HIG1 Hypoxia Inducible Domain Family Member 1C in Cryptorchidism of Yak and Its Regulatory Mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2983-2994.
表 1
引物序列信息表"
引物名称Primer name | 引物序列(5′→3′)Primer sequence | 片段长度/bp Product length | 温度/℃ Tm |
HIGD1C | F:TCAGCAGATGAAGACGAAGG R:GGACACCACAGTCACAAAGC | 102 | 56 |
Caspase-3 | F:GGTGGGGTCAGAGCCATAGA R:CATCTTCCACACACACCCGTAG | 84 | 57 |
Bax | F:CCGAGTGGCGGCTGAAA R:TCCAGATGGTGAGCGAGGC | 287 | 60 |
Bcl-2 | F:CTGCACCTGACGCCCTTCAC R:GCGTCCCAGCCTCCGTTGT | 236 | 60 |
GAPDH | F:GCTGGTGCTGAGTATGTGGTG R:GCTGACAATCTTGAGGGTGTTG | 177 | 60 |
1 | 张天留, 高雪, 徐凌洋, 等. 高原家养动物环境适应性的研究进展[J]. 畜牧兽医学报, 2020, 51 (7): 1475- 1487. |
ZHANG T L , GAO X , XU L Y , et al. Research progress on environment adaptation of plateau domestic animals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (7): 1475- 1487. | |
2 |
AMANN R P , VEERAMACHANENI D N R . Cryptorchidism in common eutherian mammals[J]. Reproduction, 2007, 133 (3): 541- 561.
doi: 10.1530/REP-06-0272 |
3 |
GURNEY J K , MCGLYNN K A , STANLEY J , et al. Risk factors for cryptorchidism[J]. Nat Rev Urol,, 2017, 14 (9): 534- 548.
doi: 10.1038/nrurol.2017.90 |
4 |
PINART E , BONET S , BRIZ M , et al. Morphological and histochemical characteristics of the lamina propria in scrotal and abdominal testes from postpubertal boars: correlation with the appearance of the seminiferous epithelium[J]. J Anat, 2001, 199 (4): 435- 448.
doi: 10.1046/j.1469-7580.2001.19940435.x |
5 | SHARMA S , MANCHANDA V , GUPTA R . Testicular microlithiasis in a unilateral undescended testis: a rare phenomenon[J]. Malays J Pathol, 2013, 35 (2): 181- 183. |
6 |
PENG Y J , TANG X T , SHU H S , et al. Sertoli cells are the source of stem cell factor for spermatogenesis[J]. Development, 2023, 150 (6): dev200706.
doi: 10.1242/dev.200706 |
7 |
MERONI S B , GALARDO M N , RINDONE G , et al. Molecular mechanisms and signaling pathways involved in sertoli cell proliferation[J]. Front Endocrinol (Lausanne), 2019, 10, 224.
doi: 10.3389/fendo.2019.00224 |
8 |
JOHNSON L , THOMPSON D L , VARNER D D . Role of sertoli cell number and function on regulation of spermatogenesis[J]. Anim Reprod Sci, 2008, 105 (1-2): 23- 51.
doi: 10.1016/j.anireprosci.2007.11.029 |
9 |
FARIAS J G , BUSTOS-OBREGÓN E , ORELLANA R , et al. Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism[J]. Andrologia, 2005, 37 (1): 47- 52.
doi: 10.1111/j.1439-0272.2004.00651.x |
10 | ZHANG D C , CHEN R , CAI Y H , et al. Hyperactive reactive oxygen species impair function of porcine sertoli cells via suppression of surface protein ITGB1 and Connexin-43[J]. Zool Res, 2020, 41 (2): 203- 207. |
11 |
RIWALDT S , CORYDON T J , PANTALONE D , et al. Role of apoptosis in wound healing and apoptosis alterations in microgravity[J]. Front Bioeng Biotechnol, 2021, 9, 679650.
doi: 10.3389/fbioe.2021.679650 |
12 |
NALLURI S , GHOSHAL-GUPTA S , KUTIYANAWALLA A , et al. TIMP-1 inhibits apoptosis in lung adenocarcinoma cells via interaction with Bcl-2[J]. PLoS One, 2015, 10 (9): e0137673.
doi: 10.1371/journal.pone.0137673 |
13 | 张勤丽, 牛侨. 细胞凋亡机制概述[J]. 环境与职业医学, 2007, 24 (1): 102- 107. |
ZHANG Q L , NIU Q . Mechanism of cell apoptosis[J]. Journal of Environmental and Occupational Medicine, 2007, 24 (1): 102- 107. | |
14 |
IVANISENKO N V , SEYREK K , HILLERT-RICHTER L K , et al. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks[J]. Trends Cancer, 2022, 8 (3): 190- 209.
doi: 10.1016/j.trecan.2021.12.002 |
15 |
LAUBACH V , KAUFMANN R , BERND A , et al. Extrinsic or intrinsic apoptosis by curcumin and light: still a mystery[J]. Int J Mol Sci, 2019, 20 (4): 905.
doi: 10.3390/ijms20040905 |
16 | 张聪慧. 人工隐睾诱发小鼠睾丸组织的自噬与凋亡[D]. 杨凌: 西北农林科技大学, 2016. |
ZHANG C H. Cryptorchidisminduce autophagy and a poptosis in the mouse testis[D]. Yangling: Northwest A&F University, 2016. (in Chinese) | |
17 | GUO Y , TAN J , MIAO Y Y , et al. Effects of microvesicles on cell apoptosis under hypoxia[J]. Oxid Med Cell Longev, 2019, 2019, 5972152. |
18 | 陈韦任, 杜辉, 钱赓, 等. Bax抑制因子1通过促进视神经萎缩蛋白1表达抑制小鼠动脉血管钙化[J]. 南方医科大学学报, 2022, 42 (3): 330- 337. |
CHEN W R , DU H , QIAN G , et al. Bax inhibitor 1 inhibits vascular calcification in mice by activating optic atrophy 1 expression[J]. Journal of Southern Medical University, 2022, 42 (3): 330- 337. | |
19 |
CAO X Y , FU M Y , BI R C , et al. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway[J]. Chemosphere, 2021, 263, 128346.
doi: 10.1016/j.chemosphere.2020.128346 |
20 |
EISENBERG-LERNER A , BIALIK S , SIMON H U , et al. Life and death partners: apoptosis, autophagy and the cross-talk between them[J]. Cell Death Differ, 2009, 16 (7): 966- 975.
doi: 10.1038/cdd.2009.33 |
21 | 范小瑞. 猪隐睾睾丸精子发生障碍的分子机制研究[D]. 太谷: 山西农业大学, 2021. |
FAN X R. Study on the molecular mechanism of spermatogenesis disorder in cryptorchidism boars[D]. Taigu: Shanxi Agricultural University, 2021. (in Chinese) | |
22 | KOCAK I , DUNDAR M , HEKIMGIL M , et al. Assessment of germ cell apoptosis in cryptorchid rats[J]. Asian J Androl, 2002, 4 (3): 183- 186. |
23 |
TEKAYEV M , BOSTANCIERI N , SAADAT K A S M , et al. Effects of Moringa oleifera lam extract (MOLE) in the heat shock protein 70 expression and germ cell apoptosis on experimentally induced cryptorchid testes of rats[J]. Gene, 2019, 688, 140- 150.
doi: 10.1016/j.gene.2018.11.091 |
24 | STAUB C , JOHNSON L . Review: spermatogenesis in the bull[J]. Animal, 2018, 12 (S1): S27- S35. |
25 |
WANG J , GAO W J , DENG S L , et al. High temperature suppressed SSC self-renewal through S phase cell cycle arrest but not apoptosis[J]. Stem Cell Res Ther, 2019, 10 (1): 227.
doi: 10.1186/s13287-019-1335-5 |
26 |
JOHNSON C , JIA Y , WANG C , et al. Role of caspase 2 in apoptotic signaling in primate and murine germ cells[J]. Biol Reprod, 2008, 79 (5): 806- 814.
doi: 10.1095/biolreprod.108.068833 |
27 |
郑航, 郑新民, 李世文, 等. Bcl-2/Bax基因表达对隐睾生殖细胞凋亡的影响[J]. 中国男科学杂志, 2000, 14 (2): 81-82, 85.
doi: 10.3969/j.issn.1008-0848.2000.02.003 |
ZHENG H , ZHENG X M , LI S W , et al. Bcl-2/Bax expression and testicular germ cell apoptosis in experimental cryptorchidism[J]. Chinese Journal of Andrology, 2000, 14 (2): 81-82, 85.
doi: 10.3969/j.issn.1008-0848.2000.02.003 |
|
28 |
BEDÓ G , VARGAS M , FERREIRO M J , et al. Characterization of Hypoxia induced gene 1: expression during rat central nervous system maturation and evidence of antisense RNA expression[J]. Int J Dev Biol, 2005, 49 (4): 431- 436.
doi: 10.1387/ijdb.041901gb |
29 |
CHIRICOSTA L , GUGLIANDOLO A , DIOMEDE F , et al. Moringin pretreatment inhibits the expression of genes involved in mitophagy in the stem cell of the human periodontal ligament[J]. Molecules, 2019, 24 (18): 3217.
doi: 10.3390/molecules24183217 |
30 |
ZHU J Y , CHEN M , MU W J , et al. The functional role of higd1a in mitochondrial homeostasis and in multiple disease processes[J]. Genes Dis, 2023, 10 (5): 1833- 1845.
doi: 10.1016/j.gendis.2022.03.018 |
31 |
OATLEY M J , RACICOT K E , OATLEY J M . Sertoli cells dictate spermatogonial stem cell niches in the mouse testis[J]. Biol Reprod, 2011, 84 (4): 639- 645.
doi: 10.1095/biolreprod.110.087320 |
32 |
ZHENG Y , GAO Q , LI T J , et al. Sertoli cell and spermatogonial development in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 45.
doi: 10.1186/s40104-022-00687-2 |
33 |
WEN Y J , MA X X , WANG X L , et al. HnRNPU in sertoli cells cooperates with WT1 and is essential for testicular development by modulating transcriptional factors Sox8/9[J]. Theranostics, 2021, 11 (20): 10030- 10046.
doi: 10.7150/thno.66819 |
34 |
LIU B , CUI Y H , CHEN W , et al. Hsa-mir-100-3p controls the proliferation, DNA synthesis, and apoptosis of human sertoli cells by binding to SGK3[J]. Front Cell Dev Biol, 2021, 9, 642916.
doi: 10.3389/fcell.2021.642916 |
35 |
TIMÓN-GÓMEZ A , SCHARR A L , WONG N Y , et al. Tissue-specific mitochondrial HIGD1C promotes oxygen sensitivity in carotid body chemoreceptors[J]. Elife, 2022, 11, e78915.
doi: 10.7554/eLife.78915 |
36 |
DOBASHI M , FUJISAWA M , YAMAZAKI T , et al. Inhibition of steroidogenesis in leydig cells by exogenous nitric oxide occurs independently of steroidogenic acute regulatory protein (star) mRNA[J]. Arch Androl, 2001, 47 (3): 203- 209.
doi: 10.1080/014850101753145915 |
37 |
XU Y R , DONG H S , YANG W X . Regulators in the apoptotic pathway during spermatogenesis: Killers or guards?[J]. Gene, 2016, 582 (2): 97- 111.
doi: 10.1016/j.gene.2016.02.007 |
38 | ALLAN L A , CLARKE P R . A mechanism coupling cell division and the control of apoptosis[J]. SEB Exp Biol Ser, 2008, 59, 257- 265. |
39 |
YEE Y H , CHONG S J F , PERVAIZ S . The anti-oxidant and pro-oxidant dichotomy of Bcl-2[J]. Biol Chem, 2016, 397 (7): 585- 593.
doi: 10.1515/hsz-2016-0127 |
40 |
KVANSAKUL M , CARIA S , HINDS M G . The Bcl-2 family in host-virus interactions[J]. Viruses, 2017, 9 (10): 290.
doi: 10.3390/v9100290 |
41 |
叶超群, 黄会芝. 线粒体HIGD 1A在新生儿缺氧缺血性脑损伤中的研究进展[J]. 中国医学创新, 2022, 19 (32): 184- 188.
doi: 10.3969/j.issn.1674-4985.2022.32.040 |
YE C Q , HUANG H Z . Research progress of mitochondrial higd 1a in hypoxic-ischemic brain damage in newborn[J]. Medical Innovation of China, 2022, 19 (32): 184- 188.
doi: 10.3969/j.issn.1674-4985.2022.32.040 |
|
42 | 周克文, 郑新民. 单侧隐睾对侧睾丸损害与HIF-1α和VEGF的关系[J]. 医学新知杂志, 2006, 16 (5): 283- 285. |
ZHOU K W , ZHENG X M . Relationship of the damage of contralateral testis of unilateral cryptorchidism to the expression of hypoxia inducible factor-1α and vascular endothelial growth factor[J]. New Medicine, 2006, 16 (5): 283- 285. | |
43 |
POWELL J D , ELSHTEIN R , FOREST D J , et al. Stimulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the adult rat testis following ischemic injury occurs without an increase in HIF-1α messenger RNA expression[J]. Biol Reprod, 2002, 67 (3): 995- 1002.
doi: 10.1095/biolreprod.101.002576 |
44 | ⅡDAT, MINES, FUJIMOTOH, 等. Hypoxia-inducible factor-1α induces cell cycle arrest of endothelial cells[J]. Genes Cells, 2002, 7 (2): 143- 149. |
45 | 柴思敏. 哺乳动物睾丸位置的演化和健康"隐睾"的分子进化机制[D]. 南京: 南京师范大学, 2021. |
CHAI S M. The evolution of mammalian testis position and the molecular evolutionary mechanism of healthy cryptorchidism[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese) |
[1] | 许师源, 张留光, 刘松奇, 吴开慧, 汪超, 王栋, 庞云渭. ART3调控小鼠精子发生的作用与机制研究[J]. 畜牧兽医学报, 2024, 55(7): 2995-3010. |
[2] | 刘博华, 符汉宇, 王玉恒, 索朗斯珠, 牛家强, 包玉花, 李家奎, 徐业芬. 西藏那曲市牦牛源B型多杀性巴氏杆菌的分离鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(7): 3105-3118. |
[3] | 罗金婷, 许发芳, 王磊, 罗璇, 马玉红, 张剑搏, 黄伟华, 尚月军, 吴国芳. 红景天多糖对低氧环境下猪睾丸间质细胞增殖及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(6): 2441-2450. |
[4] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[5] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[6] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[7] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[8] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[9] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[10] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[11] | 徐东辉, 徐宇辉, 李瑞哲, 成海建, 马志杰. 牦牛基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(3): 933-943. |
[12] | 虎巧燕, 翟相钦, 李一丹, 韩家乐, 雷初朝, 党瑞华. Bta-miR-101对牛睾丸支持细胞增殖、凋亡及分泌的影响[J]. 畜牧兽医学报, 2024, 55(3): 1040-1051. |
[13] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[14] | 刘斌, 王萌, 潘阳阳, 王靖雷, 徐庚全. LPA对牦牛卵丘细胞扩张因子HAS2、PTGS2和PTX3表达的影响[J]. 畜牧兽医学报, 2024, 55(2): 552-561. |
[15] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||