1 |
MAEZONO K , KOBAYASHI S , TABATA K , et al. Development of a highly specific serodiagnostic ELISA for West Nile virus infection using subviral particles[J]. Sci Rep, 2021, 11 (1): 9213.
doi: 10.1038/s41598-021-88777-5
|
2 |
CHAN K R , ISMAIL A A , THERGARAJAN G , et al. Serological cross-reactivity among common flaviviruses[J]. Front Cell Infect Microbiol, 2022, 12, 975398.
doi: 10.3389/fcimb.2022.975398
|
3 |
MUKHOPADHYAY S , KIM B S , CHIPMAN P R , et al. Structure of West Nile virus[J]. Science, 2003, 302 (5643): 248.
doi: 10.1126/science.1089316
|
4 |
ZHANG S Z , HE Y , WU Z , et al. Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection[J]. Front Immunol, 2023, 14, 1205002.
doi: 10.3389/fimmu.2023.1205002
|
5 |
KHROMYKH A A , MEKA H , GUYATT K J , et al. Essential role of cyclization sequences in flavivirus RNA replication[J]. J Virol, 2001, 75 (14): 6719- 6728.
doi: 10.1128/JVI.75.14.6719-6728.2001
|
6 |
MARKOFF L . 5'- and 3'-noncoding regions in flavivirus RNA[J]. Adv Virus Res, 2003, 59, 177- 228.
|
7 |
TAN T Y , FIBRIANSAH G , LOK S M . Capsid protein is central to the birth of flavivirus particles[J]. PLoS Pathog, 2020, 16 (5): e1008542.
doi: 10.1371/journal.ppat.1008542
|
8 |
LI L , LOK S M , YU I M , et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation[J]. Science, 2008, 319 (5871): 1830- 1834.
doi: 10.1126/science.1153263
|
9 |
REYES-SANDOVAL A , LUDERT J E . The dual role of the antibody response against the flavivirus non-structural protein 1 (NS1) in protection and immuno-pathogenesis[J]. Front Immunol, 2019, 10, 1651.
doi: 10.3389/fimmu.2019.01651
|
10 |
SHRIVASTAVA G , VISOSO-CARVAJAL G , GARCIA-CORDERO J , et al. Dengue virus serotype 2 and its non-structural proteins 2A and 2B activate NLRP3 inflammasome[J]. Front Immunol, 2020, 11, 352.
doi: 10.3389/fimmu.2020.00352
|
11 |
ZEIDLER J D , FERNANDES-SIQUEIRA L O , BARBOSA G M , et al. Non-canonical roles of dengue virus non-structural proteins[J]. Viruses, 2017, 9 (3): 42.
doi: 10.3390/v9030042
|
12 |
EGLOFF M P , DECROLY E , MALET H , et al. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5[J]. J Mol Biol, 2007, 372 (3): 723- 736.
doi: 10.1016/j.jmb.2007.07.005
|
13 |
DONG H P , CHANG D C , HUA M H C , et al. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase[J]. PLoS Pathog, 2012, 8 (4): e1002642.
doi: 10.1371/journal.ppat.1002642
|
14 |
EGLOFF M P , BENARROCH D , SELISKO B , et al. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5:crystal structure and functional characterization[J]. EMBO J, 2002, 21 (11): 2757- 2768.
doi: 10.1093/emboj/21.11.2757
|
15 |
WANG T , ANDERSON J F , MAGNARELLI L A , et al. West Nile virus envelope protein[J]. Ann N Y Acad Sci, 2001, 951 (1): 325- 327.
doi: 10.1111/j.1749-6632.2001.tb02708.x
|
16 |
KÖNENKAMP L , ZIEGLER U , NAUCKE T , et al. Antibody ratios against NS1 antigens of tick-borne encephalitis and West Nile viruses support differential flavivirus serology in dogs[J]. Transbound Emerg Dis, 2022, 69 (5): e2789- e2799.
|
17 |
王淑娟, 王莹, 徐天刚, 等. 西尼罗热国内外疫情形势与防控[J]. 中国动物检疫, 2023, 40 (9): 82- 90.
doi: 10.3969/j.issn.1005-944X.2023.09.015
|
|
WANG S J , WANG Y , XU T G , et al. Global outbreak status and control of West Nile fever[J]. China Animal Health Inspection, 2023, 40 (9): 82- 90.
doi: 10.3969/j.issn.1005-944X.2023.09.015
|
18 |
曹振轩. 科学防控西尼罗热[J]. 中国海关, 2023, (8): 63.
|
|
CAO Z X . The scientific prevention and control of West Nile fever[J]. China Customs, 2023, (8): 63.
|
19 |
龚震宇. 2019年美国亚利桑那州一起西尼罗热暴发疫情简况[J]. 疾病监测, 2021, 36 (6): 634.
|
|
GONG Z Y . An outbreak of west Nile virus-Arizona, 2019[J]. Disease Surveillance, 2021, 36 (6): 634.
|
20 |
GUY B , GUIRAKHOO F , BARBAN V , et al. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses[J]. Vaccine, 2010, 28 (3): 632- 649.
doi: 10.1016/j.vaccine.2009.09.098
|
21 |
郑小龙, 朱来华, 王群, 等. 西尼罗病毒病诊断技术研究进展[J]. 动物医学进展, 2014, 35 (3): 92- 97.
doi: 10.3969/j.issn.1007-5038.2014.03.021
|
|
ZHENG X L , ZHU L H , WANG Q , et al. Progress on diagnostic techniques of West Nile virus disease[J]. Progress in Veterinary Medicine, 2014, 35 (3): 92- 97.
doi: 10.3969/j.issn.1007-5038.2014.03.021
|
22 |
ZAAYMAN D , HUMAN S , VENTER M . A highly sensitive method for the detection and genotyping of West Nile virus by real-time PCR[J]. J Virol Methods, 2009, 157 (2): 155- 160.
doi: 10.1016/j.jviromet.2008.12.014
|
23 |
邱璐, 李小林, 蒋静, 等. 实时荧光PCR检测西尼罗病毒方法的建立[J]. 畜牧与兽医, 2012, 44 (9): 4- 7.
|
|
QIU L , LI X L , JIANG J , et al. Detection of West Nile virus by real-time RT-PCR[J]. Animal Husbandry & Veterinary Medicine, 2012, 44 (9): 4- 7.
|
24 |
LINKE S , ELLERBROK H , NIEDRIG M , et al. Detection of West Nile virus lineages 1 and 2 by real-time PCR[J]. J Virol Methods, 2007, 146 (1-2): 355- 358.
doi: 10.1016/j.jviromet.2007.05.021
|
25 |
VÁZQUEZ A , HERRERO L , NEGREDO A , et al. Real time PCR assay for detection of all known lineages of West Nile virus[J]. J Virol Methods, 2016, 236, 266- 270.
doi: 10.1016/j.jviromet.2016.07.026
|
26 |
张俊锋, 张雅丽, 王瑞晨, 等. 流行性乙型脑炎和西尼罗病毒双重微滴数字PCR检测方法的建立[J]. 中国媒介生物学及控制杂志, 2023, 34 (3): 285- 290.
|
|
ZHANG J F , ZHANG Y L , WANG R C , et al. Establishment of a duplex droplet digital PCR assay for Japanese encephalitis and West Nile viruses[J]. Chinese Journal of Vector Biology and Control, 2023, 34 (3): 285- 290.
|
27 |
PARIDA M , POSADAS G , INOUE S , et al. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus[J]. J Clin Microbiol, 2004, 42 (1): 257- 263.
doi: 10.1128/JCM.42.1.257-263.2004
|
28 |
CAO Z G , WANG H L , WANG L N , et al. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip[J]. Front Microbiol, 2016, 7, 554.
|
29 |
吕沁风, 廖静, 罗鹏, 等. 西尼罗病毒的逆转录重组酶介导扩增检测方法[J]. 微生物学通报, 2020, 47 (2): 659- 664.
|
|
LÜ Q F , LIAO J , LUO P , et al. Development of a reverse transcription recombinase aided amplification assay for detection of West Nile virus[J]. Microbiology China, 2020, 47 (2): 659- 664.
|
30 |
张逸龙, 叶润, 勒斌, 等. 基于逆转录-酶促重组等温扩增原理的西尼罗病毒基因检测方法的建立[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40 (3): 344-348, 354.
|
|
ZHANG Y L , YE R , LE B , et al. A reverse transcriptase aid-enzymatic recombinase isothermal amplification-based method for detection of West Nile virus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40 (3): 344-348, 354.
|
31 |
WOLLANTS E , SMOLDERS D , NAESENS R , et al. Use of next-generation sequencing for diagnosis of West Nile virus infection in patient returning to Belgium from Hungary[J]. Emerg Infect Dis, 2018, 24 (12): 2380- 2382.
doi: 10.3201/eid2412.180494
|
32 |
JOHNSON D J , OSTLUND E N , PEDERSEN D D , et al. Detection of North American West Nile virus in animal tissue by a reverse transcription-nested polymerase chain reaction assay[J]. Emerg Infect Dis, 2001, 7 (4): 739- 741.
doi: 10.3201/eid0704.017425
|
33 |
XIAO S Y , GUZMAN H , ZHANG H , et al. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis[J]. Emerg Infect Dis, 2001, 7 (4): 714- 721.
doi: 10.3201/eid0704.017420
|
34 |
CASTILLO-OLIVARES J , WOOD J . West Nile virus infection of horses[J]. Vet Res, 2004, 35 (4): 467- 483.
doi: 10.1051/vetres:2004022
|
35 |
PRINCE H E , CALMA J , PHAM T , et al. Frequency of missed cases of probable acute West Nile virus (WNV) infection when testing for WNV RNA alone or WNV immunoglobulin M alone[J]. Clin Vaccine Immunol, 2009, 16 (4): 587- 588.
doi: 10.1128/CVI.00462-08
|
36 |
MARTIN D A , MUTH D A , BROWN T , et al. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections[J]. J Clin Microbiol, 2000, 38 (5): 1823- 1826.
doi: 10.1128/JCM.38.5.1823-1826.2000
|
37 |
LUDOLFS D , NIEDRIG M , PAWESKA J T , et al. Reverse ELISA for the detection of anti West Nile virus IgG antibodies in humans[J]. Eur J Clin Microbiol Infect Dis, 2007, 26 (7): 467- 473.
doi: 10.1007/s10096-007-0309-1
|
38 |
THROSBY M , GEUIJEN C , GOUDSMIT J , et al. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus[J]. J Virol, 2006, 80 (14): 6982- 6992.
doi: 10.1128/JVI.00551-06
|
39 |
OLIPHANT T , NYBAKKEN G E , AUSTIN S K , et al. Induction of epitope-specific neutralizing antibodies against West Nile virus[J]. J Virol, 2007, 81 (21): 11828- 11839.
doi: 10.1128/JVI.00643-07
|
40 |
BALMASEDA A , STETTLER K , MEDIALDEA-CARRERA R , et al. Antibody-based assay discriminates Zika virus infection from other flaviviruses[J]. Proc Natl Acad Sci U S A, 2017, 114 (31): 8384- 8389.
doi: 10.1073/pnas.1704984114
|
41 |
DING X X , LI X F , DENG Y Q , et al. Development of a double antibody sandwich ELISA for West Nile virus detection using monoclonal antibodies against non-structural protein 1[J]. PLoS One, 2014, 9 (10): e108623.
doi: 10.1371/journal.pone.0108623
|
42 |
曹增国. 西尼罗病毒快速检测方法的建立与应用[D]. 北京: 中国人民解放军军事医学科学院, 2016.
|
|
CAO Z G. Developments and applications of west Nile Virus rapid diagnosis methods[D]. Beijing: Academy of Military Medical Sciences, 2016. (in Chinese)
|
43 |
MALAN A K , STIPANOVICH P J , MARTINS T B , et al. Detection of IgG and IgM to West Nile virus: development of an immunofluorescence assay[J]. Am J Clin Pathol, 2003, 119 (4): 508- 515.
doi: 10.1309/WJJ7UE42DFHTTF1X
|
44 |
PENNICK K E , MCKNIGHT C A , PATTERSON J S , et al. Diagnostic sensitivity and specificity of in situ hybridization and immunohistochemistry for Eastern equine encephalitis virus and West Nile virus in formalin-fixed, paraffin-embedded brain tissue of horses[J]. J Vet Diagn Invest, 2012, 24 (2): 333- 338.
doi: 10.1177/1040638711435230
|
45 |
GODHARDT J A , BEHELER K , O'CONNOR M J , et al. Evaluation of antigen-capture ELISA and immunohistochemical methods for avian surveillance of West Nile virus[J]. J Vet Diagn Invest, 2006, 18 (1): 85- 89.
doi: 10.1177/104063870601800112
|
46 |
CRIVEI L A , MOUTAILLER S , GONZALEZ G , et al. Detection of West Nile virus lineage 2 in eastern Romania and first identification of sindbis virus RNA in mosquitoes analyzed using high-throughput microfluidic real-time PCR[J]. Viruses, 2023, 15 (1): 186.
doi: 10.3390/v15010186
|
47 |
FAROOQ Z , ROCKLÖV J , WALLIN J , et al. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers[J]. Lancet Reg Health Eur, 2022, 17, 100370.
doi: 10.1016/j.lanepe.2022.100370
|