1 |
CHAHOTA R , SHARMA P , KUMAR R , et al. Investigation of an outbreak of sheeppox among native sheep breeds in the Western Himalayas of India[J]. Vet Res Commun, 2022, 46 (1): 101- 107.
doi: 10.1007/s11259-021-09833-z
|
2 |
DUTTA T K , ROYCHOUDHURY P , KAWLNI L , et al. An outbreak of Goatpox virus infection in Wild Red Serow (Capricornis rubidus) in Mizoram, India[J]. Transbound Emerg Dis, 2019, 66 (1): 181- 185.
doi: 10.1111/tbed.12997
|
3 |
RAMAKRISHNAN M A , SANTHAMANI R , PANDEY A B . Capripox outbreak in a mixed flock of sheep and goats in India[J]. Transbound Emerg Dis, 2017, 64 (1): 27- 30.
doi: 10.1111/tbed.12604
|
4 |
ROY P , JAISREE S , BALAKRISHNAN S , et al. Molecular epidemiology of goat pox viruses[J]. Transbound Emerg Dis, 2018, 65 (1): 32- 36.
doi: 10.1111/tbed.12763
|
5 |
ZHANG Q , LENARDO M J , BALTIMORE D . 30 Years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell, 2017, 168 (1-2): 37- 57.
doi: 10.1016/j.cell.2016.12.012
|
6 |
GILMORE T D . Introduction to NF-κB: players, pathways, perspectives[J]. Oncogene, 2006, 25 (51): 6680- 6684.
doi: 10.1038/sj.onc.1209954
|
7 |
CHRISTIAN F , SMITH E L , CARMODY R J . The regulation of NF-κB subunits by phosphorylation[J]. Cells, 2016, 5 (1): 12.
doi: 10.3390/cells5010012
|
8 |
STRUZIK J , SZULC-DBROWSKA L . NF-κB as an important factor in optimizing poxvirus-based vaccines against viral infections[J]. Pathogens, 2020, 9 (12): 1001.
doi: 10.3390/pathogens9121001
|
9 |
REUS J B , REX E A , GAMMON D B . How to inhibit nuclear factor-Kappa B signaling: lessons from poxviruses[J]. Pathogens, 2022, 11 (9): 1061.
doi: 10.3390/pathogens11091061
|
10 |
BLANIÉ S , MORTIER J , DELVERDIER M , et al. M148R and M149R are two virulence factors for myxoma virus pathogenesis in the European rabbit[J]. Vet Res, 2009, 40 (1): 11.
doi: 10.1051/vetres:2008049
|
11 |
CHANG S J , HSIAO J C , SONNBERG S , et al. Poxvirus host range protein CP77 contains an F-box-like domain that is necessary to suppress NF-κB activation by tumor necrosis factor alpha but is independent of its host range function[J]. J Virol, 2009, 83 (9): 4140- 4152.
doi: 10.1128/JVI.01835-08
|
12 |
BURLES K , VAN BUUREN N , BARRY M . Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NF-κB[J]. Virology, 2014, 468-470, 351- 362.
doi: 10.1016/j.virol.2014.08.030
|
13 |
HERBERT M H , SQUIRE C J , MERCER A A . Poxviral ankyrin proteins[J]. Viruses, 2015, 7 (2): 709- 738.
doi: 10.3390/v7020709
|
14 |
CESARO T , MICHIELS T . Inhibition of PKR by Viruses[J]. Front Microbiol, 2021, 12, 757238.
doi: 10.3389/fmicb.2021.757238
|
15 |
CRUZ A G B , SHISLER J L . Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation[J]. J Gen Virol, 2016, 97 (10): 2691- 2702.
doi: 10.1099/jgv.0.000576
|
16 |
INGHAM R J , FACUNDO F L , DONG J N . Poxviral ANKR/F-box proteins: substrate adapters for ubiquitylation and more[J]. Pathogens, 2022, 11 (8): 875.
doi: 10.3390/pathogens11080875
|
17 |
陈轶霞, 邵忠伟, 李贵华, 等. 具有E3泛素连接酶功能的痘病毒蛋白质[J]. 畜牧兽医学报, 2015, 46 (12): 2127- 2134.
doi: 10.11843/j.issn.0366-6964.2015.12.002
|
|
CHEN Y X , SHAO Z W , LI G H , et al. Poxvirus encode proteins with E3 ubiquitin ligase function[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (12): 2127- 2134.
doi: 10.11843/j.issn.0366-6964.2015.12.002
|
18 |
LAMB S A , RAHMAN M M , MCFADDEN G . Recombinant myxoma virus lacking all poxvirus ankyrin-repeat proteins stimulates multiple cellular anti-viral pathways and exhibits a severe decrease in virulence[J]. Virology, 2014, 464-465, 134- 145.
doi: 10.1016/j.virol.2014.06.021
|
19 |
PALLETT M A , REN H W , ZHANG R Y , et al. Vaccinia virus BBK E3 ligase adaptor A55 targets importin-dependent NF-κB activation and inhibits CD8+ T-cell memory[J]. J Virol, 2019, 93 (10): e00051- 19.
|
20 |
张雪萍. 新疆羊痘病毒分离株ANK基因家族序列分析及其缺失对宿主细胞转录水平的影响[D]. 新疆: 塔里木大学, 2020.
|
|
ZHANG X P. Sequence analysis of the ANK gene family of Xinjiang capripox virus isolates and the effect of its deletion on the transcription level of host cell[D]. Xinjiang: Tarim University, 2020. (in Chinese)
|
21 |
SANTORO M G , ROSSI M , AMICI C . NF-κB and virus infection: who controls whom[J]. EMBO J, 2003, 22 (11): 2552- 2560.
doi: 10.1093/emboj/cdg267
|
22 |
王平忠, 于海涛, 白雪帆, 等. NF-κB信号通路在病毒感染中的作用[J]. 细胞与分子免疫学杂志, 2011, 27 (8): 933-934, 937.
|
|
WANG P Z , YU H T , BAI X F , et al. Role of NF-κB signaling pathway in viral infection[J]. Chinese Journal of Cellular and Molecular Immunology, 2011, 27 (8): 933-934, 937.
|
23 |
SONG K , LI S T . The role of ubiquitination in NF-κB signaling during virus infection[J]. Viruses, 2021, 13 (2): 145.
doi: 10.3390/v13020145
|
24 |
HE C C , TONG J J , ZHANG X P , et al. Comparative analysis of ankyrin (ANK) genes of five capripoxviruses isolate strains from Xinjiang province in China[J]. Virol J, 2020, 17 (1): 133.
doi: 10.1186/s12985-020-01407-w
|
25 |
陈轶霞, 龙玲, 骆学农. 痘病毒锚蛋白重复序列蛋白对NF-кB信号通路的影响[J]. 中国免疫学杂志, 2017, 33 (5): 765-768, 772.
|
|
CHEN Y X , LONG L , LUO X N . Effect of ankyrin repeat protein of poxvirus on NF-кB signaling pathway[J]. Chinese Journal of Immunology, 2017, 33 (5): 765-768, 772.
|
26 |
冯园, 贾怀杰, 何小兵, 等. 口疮病毒B4R锚蛋白抑制细胞NF-κB信号通路的研究[J]. 中国兽医科学, 2016, 46 (11): 1412- 1417.
|
|
FENG Y , JIA H J , HE X B , et al. Poxvirus ankyrin protein B4R from orf virus inhibits cell NF-κB signaling pathway[J]. Chinese Veterinary Science, 2016, 46 (11): 1412- 1417.
|
27 |
冯园. 羊口疮病毒编码的锚蛋白调节宿主细胞NF-κB活化的作用研究[D]. 桂林: 桂林医学院, 2016.
|
|
FENG Y. Research on the activation of host cell NF-κB regulated by poxvirus ankyrin protein from Orf virus[D]. Guilin: Guilin Medical University, 2016. (in Chinese)
|
28 |
安雪珂. 羊口疮病毒编码的锚蛋白抑制NF-κB信号通路的分子机制研究[D]. 兰州: 兰州大学, 2019.
|
|
AN X K. Molecular mechanism of the inhibition of NF-κB signaling pathway by ankyrin repeat proteins of Orf virus[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
|
29 |
安雪珂, 贾怀杰, 冯园, 等. 羊口疮病毒ORF128锚蛋白对HEK293T细胞NF-κB信号通路的调节作用及机制[J]. 细胞与分子免疫学杂志, 2019, 35 (3): 243- 249.
|
|
AN X K , JIA H J , FENG Y , et al. Regulating effect of ORF128 on NF-κBsignaling pathway of HEK293T cells and its mechanism[J]. Chinese Journal of Cellular and Molecular Immunology, 2019, 35 (3): 243- 249.
|