畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4403-4416.doi: 10.11843/j.issn.0366-6964.2024.10.014
王雅婷1,2(), 曾雅婷2, 张幸哲2, 吴琼2,*(
), 吴旭1,*(
)
收稿日期:
2024-03-25
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
吴琼,吴旭
E-mail:2422694011@qq.com;106565789@qq.com;wuxufafu@163.com
作者简介:
王雅婷(1999-), 女, 新疆库尔勒人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: 2422694011@qq.com
基金资助:
Yating WANG1,2(), Yating ZENG2, Xingzhe ZHANG2, Qiong WU2,*(
), Xu WU1,*(
)
Received:
2024-03-25
Online:
2024-10-23
Published:
2024-11-04
Contact:
Qiong WU, Xu WU
E-mail:2422694011@qq.com;106565789@qq.com;wuxufafu@163.com
摘要:
旨在研究日龄、品种对鸭胸肌的脂质组成和风味物质的影响。本研究选取120日龄连城白鸭(LC120),500日龄连城白鸭(LC500),500日龄龙岩山麻鸭(SM500)为研究对象,采集胸肌组织,利用液相色谱-质谱联用技术测定鸭肉脂质组成,顶空固相微萃取结合全二维气相色谱-飞行时间质谱联用技术检测鸭肉中挥发性风味物质组成,用单变量统计检验和偏最小二乘判别分析(PLS-DA)筛选差异脂质和差异挥发性风味物质,计算相对气味活度值(ROAV),确定影响鸭风味的主要物质。结果显示,在LC120、LC500、SM500中共鉴定出1 615种脂质,LC120与LC500和SM500与LC500的比较中分别筛选到26和38个差异脂质,其中LC120与LC500的脂质差异主要为甘油三酯类(triglyceride,TG),SM500与LC500的脂质差异主要体现在磷脂酰胆碱类(phosphatidylcholine,PC)上。进一步分析发现,TG、PC的结构位点上是不饱和脂肪酸时会影响肉类中挥发性化合物的形成,在LC120、LC500中TG侧链sn-2位点存在少量多不饱和脂肪酸,但在SM500中并未发现。风味物质检测结果显示,在LC120与LC500的比较中筛选出1种差异挥发性化合物,为3-乙酰基-2, 4-二甲基呋喃;在SM500与LC500的比较中筛选出29种差异挥发性化合物,差异挥发性化合物主要体现在烃类、醛酮类和其他类等。此外,计算ROAV值得到3组鸭肉的关键香气化合物16种,其中2-甲基丁醛和2, 3-丁二酮为主要风味物质。综上,本研究筛选到了64种区分3组鸭胸肌肌肉的差异脂质,确定16种挥发性有机化合物是3组鸭胸肌肌肉的关键香气物质,表明连城白鸭风味优于龙岩山麻鸭,品种对肉质风味的影响大于日龄对肉质风味的影响;TG、PC在鸭肉挥发性化合物的形成中起着关键作用,这些为鸭种质资源开发以及我国地方品种鸭风味品质评价提供理论依据和数据支撑。
中图分类号:
王雅婷, 曾雅婷, 张幸哲, 吴琼, 吴旭. 基于脂质组学和风味组学分析日龄、品种对鸭胸肌风味的影响[J]. 畜牧兽医学报, 2024, 55(10): 4403-4416.
Yating WANG, Yating ZENG, Xingzhe ZHANG, Qiong WU, Xu WU. Analysis of the Effects of Age and Variety on the Flavor of Duck Breast Muscle Based on Lipidomics and Flavoromics[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4403-4416.
表 1
差异脂质筛选"
比较组别 Compared group | 脂质 Lipid | 脂质亚类 Lipid subclasses | VIP值 VIP value | P值 P value | 差异倍数 log2(Fold Change) | 类型 Type |
LC120 vs. LC500 | BisMePA(18:3e_20:3) | GP | 1.04 | 0.00 | 0.89 | up |
PE(18:1e_18:0) | GP | 1.19 | 0.04 | 1.16 | up | |
PE(40:5e) | GP | 1.08 | 0.04 | 1.08 | up | |
Cer(m18:0_20:0) | SP | 1.35 | 0.04 | 0.66 | up | |
Hex2Cer(d18:1_20:0) | SP | 2.04 | 0.00 | -0.42 | down | |
Hex2Cer(d18:1_23:0) | SP | 1.58 | 0.00 | -0.67 | down | |
LPE(18:1) | GP | 2.11 | 0.02 | -0.46 | down | |
MGDG(14:0e_23:0) | SL | 1.14 | 0.02 | -0.52 | down | |
MePC(32:3e) | GP | 1.14 | 0.05 | -0.48 | down | |
MePC(34:5) | GP | 1.95 | 0.02 | -0.45 | down | |
PC(16:2e_18:1) | GP | 1.29 | 0.00 | -0.74 | down | |
PC(18:0_18:2) | GP | 1.30 | 0.03 | -0.44 | down | |
PC(33:1) | GP | 1.19 | 0.04 | -0.32 | down | |
PE(18:2p_22:5) | GP | 1.45 | 0.03 | -0.62 | down | |
PG(35:0) | GP | 1.28 | 0.03 | -0.68 | down | |
PI(17:0_20:4) | GP | 1.29 | 0.04 | -0.63 | down | |
PI(19:0_20:4) | GP | 1.05 | 0.03 | -1.21 | down | |
SM(d18:1_21:0) | SP | 1.48 | 0.01 | -0.42 | down | |
SM(d41:1) | SP | 1.16 | 0.02 | -0.49 | down | |
SM(t38:1) | SP | 1.12 | 0.05 | -0.34 | down | |
TG(15:0_18:1_18:1) | GL | 1.40 | 0.04 | -0.55 | down | |
TG(17:0_18:1_18:1) | GL | 1.17 | 0.01 | -0.74 | down | |
TG(17:0_18:1_20:5) | GL | 1.68 | 0.04 | -0.77 | down | |
TG(18:1_18:2_18:2) | GL | 1.96 | 0.01 | -0.39 | down | |
TG(18:1_18:2_20:5) | GL | 1.72 | 0.01 | -0.37 | down | |
TG(20:1_18:1_18:1) | GL | 1.09 | 0.01 | -0.91 | down | |
LC500 vs. SM500 | MePC(36:6e) | GP | 3.29 | 0.02 | 0.33 | up |
MePC(39:1) | GP | 2.47 | 0.01 | 0.39 | up | |
MePC(40:1) | GP | 1.22 | 0.04 | 0.51 | up | |
MePC(40:2) | GP | 1.15 | 0.02 | 0.67 | up | |
MePC(41:2) | GP | 1.56 | 0.01 | 0.63 | up | |
PC(15:0_18:1) | GP | 1.36 | 0.01 | 0.71 | up | |
PC(17:1_15:0) | GP | 1.04 | 0.01 | 0.71 | up | |
PC(18:1_18:2) | GP | 1.63 | 0.05 | 0.65 | up | |
PC(18:1e_16:0) | GP | 3.46 | 0.03 | 0.28 | up | |
PC(40:9e) | GP | 1.27 | 0.01 | 0.28 | up | |
PE(18:1_22:6) | GP | 2.52 | 0.04 | 0.30 | up | |
PI(16:0_18:1) | GP | 2.19 | 0.05 | 0.39 | up | |
PI(16:0_18:2) | GP | 2.08 | 0.02 | 0.29 | up | |
TG(15:0_18:1_18:1) | GL | 1.14 | 0.02 | 0.49 | up | |
TG(16:1_18:1_18:1) | GL | 1.53 | 0.00 | 0.33 | up | |
TG(17:0_18:1_18:1) | GL | 1.33 | 0.03 | 0.53 | up | |
Cer(d18:0_16:0) | SP | 1.36 | 0.05 | -0.65 | down | |
DG(30:3e) | GL | 1.28 | 0.04 | -1.13 | down | |
Hex1Cer(d20:1_20:4) | SP | 1.01 | 0.02 | -0.75 | down | |
LPC(18:2) | GP | 1.15 | 0.02 | -0.68 | down | |
MePC(30:3e) | GP | 1.02 | 0.05 | -1.00 | down | |
PC(16:0_14:0) | GP | 1.46 | 0.04 | -0.63 | down | |
PC(29:0) | GP | 1.14 | 0.02 | -1.11 | down | |
PC(30:0) | GP | 1.06 | 0.03 | -0.69 | down | |
PC(37:0) | GP | 1.22 | 0.02 | -0.88 | down | |
PE(18:1e_18:0) | GP | 1.18 | 0.03 | -0.83 | down | |
PE(20:0_18:2) | GP | 1.07 | 0.00 | -0.64 | down | |
PE(22:0_18:2) | GP | 1.08 | 0.01 | -1.44 | down | |
PE(42:6e) | GP | 1.56 | 0.00 | -0.70 | down | |
PS(18:1_22:0) | GP | 1.12 | 0.05 | -0.41 | down | |
PS(22:0_20:4) | GP | 1.02 | 0.01 | -1.32 | down | |
SM(d18:1_23:3) | SP | 1.05 | 0.02 | -0.71 | down | |
SM(d32:0) | SP | 1.02 | 0.04 | -0.59 | down | |
SM(d38:0) | SP | 1.04 | 0.03 | -0.58 | down | |
SM(d40:1) | SP | 1.07 | 0.02 | -0.54 | down | |
SM(t40:7) | SP | 1.34 | 0.02 | -0.55 | down | |
TG(19:0_18:1_20:4) | GL | 1.28 | 0.02 | -0.69 | down | |
PE(42:6e) | GP | 1.56 | 0.00 | -0.70 | down |
表 2
鸭胸肌挥发性化合物的ROAV值及气味特征"
序号 Number | 物质名称 Name of the substances | 保留指数 RI | 相对气味活性值ROAV | 气味特征 Odor characteristics | ||
LC120 | LC500 | SM500 | ||||
1 | 乙醇 | 932 | 7.231 3×10-5 | 8.419 5×10-5 | 1.313 7×10-4 | 溶解剂、乙醇 |
2 | 异丁醛 | 819 | 1.882 0×10-2 | 7.399 7×10-2 | 1.360 9×10-4 | 刺鼻辛辣 |
3 | 丁醛 | 877 | 2.099 3×10-2 | 1.068 9×10-2 | 1.311 8×10-1 | 刺鼻辛辣 |
4 | 2-甲基丁醛 | 914 | 1.472 367 15 | 7.849 494 87 | 29.373 050 74 | 可可粉、杏仁 |
5 | 甲苯 | 1 042 | 4.166 1×10-5 | 4.700 0×10-5 | 2.203 4×10-6 | 酸味、烧焦味 |
6 | 甲酸 | 1 508 | 6.277 9×10-6 | 3.715 4×10-6 | 4.146 0×10-6 | 锋利尖锐 |
7 | 丙酸乙酯 | 953 | 3.314 8×10-8 | 2.148 7×10-8 | 5.848 4×10-7 | 果味、香蕉味 |
8 | 乙酸乙酯 | 888 | 1.859 1×10-3 | 1.774 9×10-3 | 3.129 9×10-3 | 果味、甜味、指甲油味 |
9 | 甲酸乙酯 | 824 | 2.428 4×10-6 | 2.587 3×10-6 | 2.635 7×10-7 | 芳香味 |
10 | 辛烷 | 800 | 7.164 2×10-5 | 8.888 5×10-5 | 6.969 3×10-6 | 汽油味、油味 |
11 | 甲基乙烯基酮 | 946 | 1.944 2×10-5 | 8.771 5×10-5 | 9.034 9×10-6 | 辛辣刺鼻 |
12 | 丙酮 | 819 | 7.201 5×10-4 | 4.743 1×10-4 | 1.738 0×10-3 | 甜味、果味、醚类 |
13 | 2, 3-丁二酮 | 979 | 100 | 100 | 100 | 令人愉快的、奶油味 |
14 | 丙烯醛 | 850 | 3.738 0×10-3 | 5.370 2×10-3 | 1.285 3×10-5 | 辛辣刺鼻 |
15 | 四氢呋喃 | 869 | 5.496 7×10-6 | 7.891 7×10-6 | 5.029 5×10-7 | 乙醚 |
16 | 2-乙基呋喃 | 951 | 1.289 2×10-4 | 3.787 9×10-4 | 2.149 1×10-4 | 烧焦味、甜味、咖啡味 |
表 3
鸭胸肌差异挥发性化合物"
物质名称 Name of the substances | LC120 vs. LC500 | LC500 vs. SM500 | |||||
VIP值 VIP value | P值 P value | 差异倍数 log2(Fold Change) | VIP值 VIP value | P值 P value | 差异倍数 log2(Fold Change) | ||
3-乙酰基-2, 4-二甲基呋喃 3-acetyl-2, 4-dimethylfuran | 2.01 | 0.03 | -0.30 | ||||
乙醇Ethanol | 1.39 | 0.03 | -2.38 | ||||
4-乙基环己醇4-Ethylcyclohexanol | 1.54 | 0.00 | -5.44 | ||||
异丁醛Propanal, 2-methyl | 1.61 | 0.00 | 7.86 | ||||
噻唑-4-甲醛Thiazole-4-carboxaldehyde | 1.39 | 0.03 | 3.74 | ||||
2-甲基丁醛Butanal, 2-methyl | 1.50 | 0.01 | -2.90 | ||||
甲苯Toluene | 1.54 | 0.01 | 3.28 | ||||
N-(2-羟基-5-甲基苯基)联苯-4-甲酰胺 Dodecane, 6-methyl | 1.60 | 0.00 | 4.24 | ||||
新戊酸乙烯酯Pivalic acid vinyl ester | 1.61 | 0.00 | 3.17 | ||||
2-乙基-1-癸烯Undecane, 3-methylene | 1.60 | 0.00 | 3.13 | ||||
2, 4-二甲基-1-庚烯2, 4-Dimethyl-1-heptene | 1.62 | 0.00 | 5.07 | ||||
1, 3-辛二烯1, 3-Octadiene | 1.62 | 0.00 | 7.45 | ||||
环戊烷,1-乙基-3-甲基 Cyclopentane, 1-ethyl-3-methyl | 1.62 | 0.00 | 5.04 | ||||
4-乙基庚烷Heptane, 4-ethyl | 1.63 | 0.00 | 5.56 | ||||
4-甲基辛烷Octane, 4-methyl | 1.63 | 0.00 | 6.26 | ||||
4-甲基癸烷Decane, 4-methyl | 1.62 | 0.00 | 5.69 | ||||
3-甲基十五烷Pentadecane, 3-methyl | 1.50 | 0.04 | -8.70 | ||||
3-甲基十四烷Tetradecane, 3-methyl | 1.42 | 0.02 | -13.34 | ||||
2, 7-二甲基辛烷Octane, 2, 7-dimethyl | 1.59 | 0.00 | 3.53 | ||||
2, 4-二甲基庚烷Heptane, 2, 4-dimethyl | 1.63 | 0.00 | 8.42 | ||||
3-乙酰基-2, 4-二甲基呋喃 1-(2, 4-Dimethyl-furan-3-yl)-ethanone | 1.62 | 0.00 | 3.54 | ||||
2, 6, 10-三甲基十五烷 Pentadecane, 2, 6, 10-trimethyl | 1.52 | 0.01 | -11.93 | ||||
2, 6, 10, 14-四甲基十七烷 Heptadecane, 2, 6, 10, 14-tetramethyl | 1.53 | 0.00 | -8.47 | ||||
丙烯醛2-Propenal | 1.62 | 0.00 | 7.64 | ||||
四氢呋喃Tetrahydrofuran | 1.61 | 0.00 | 3.08 | ||||
正壬基环己烷n-Nonylcyclohexane | 1.57 | 0.02 | -16.94 | ||||
1-羟基-1, 2, 3, 4-四氢萘三氟乙酸酯 1-hydroxy-1, 2, 3, 4-tetrahydronaphthalene trifluoroacetate | 1.34 | 0.05 | 3.85 | ||||
氟化乙烯Ethene, fluoro | 1.59 | 0.00 | 2.52 | ||||
二丁基二硫代氨基甲酸甲酯 Carbamodithioic acid, dibutyl-, methyl ester | 1.58 | 0.00 | -2.15 | ||||
S-甲基N, N-二甲基氨基甲硫酸酯 Carbamothioic acid, dimethyl-, S-methyl ester | 1.61 | 0.00 | 3.84 |
1 | 王中波, 刘爽, 贺丽霞, 等. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55 (4): 1565- 1578. |
WANG Z B , LIU S , HE L X , et al. Metabolomics analysis on different muscle tissues of Guyuan cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1565- 1578. | |
2 | 李武峰, 邱丽霞, 关家伟, 等. 基于HS-SPME-GC-MS和OPLS-DA模型探究不同嫩度驴肉的关键挥发性物质成分差异[J]. 畜牧兽医学报, 2022, 53 (12): 4258- 4270. |
LI W F , QIU L X , GUAN J W , et al. Exploring the differences of key volatile compounds in donkey meat with different tenderness based on HS-SPME-GC-MS and OPLS-DA models[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4258- 4270. | |
3 | 张丽燕, 刘万军, 朱绍辉, 等. HS-SPME-GC-MS条件优化及北京鸭挥发性风味物质分析[J]. 家禽科学, 2023, 45 (10): 19- 25. |
ZHANG L Y , LIU W J , ZHU S H , et al. Condition optimization and analysis of volatile components in Beijing duck by HS-SPME-GC-MS[J]. Poultry Science, 2023, 45 (10): 19- 25. | |
4 |
LIU H , WANG Z Y , ZHANG D Q , et al. Characterization of key aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aroma-recombination experiments[J]. J Agric Food Chem, 2019, 67 (20): 5847- 5856.
doi: 10.1021/acs.jafc.9b01564 |
5 |
张润, 杨曼, 王立贤, 等. 畜禽肉中代谢物质对肉品质的影响及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53 (8): 2444- 2452.
doi: 10.11843/j.issn.0366-6964.2022.08.004 |
ZHANG R , YANG M , WANG L X , et al. Research progress of effects of metabolic substances in meat of livestock and poultry on meat quality and the related genes[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (8): 2444- 2452.
doi: 10.11843/j.issn.0366-6964.2022.08.004 |
|
6 |
SHAHIDI F , HOSSAIN A . Role of lipids in food flavor generation[J]. Molecules, 2022, 27 (15): 5014.
doi: 10.3390/molecules27155014 |
7 |
SONG Y H , CAI C Y , SONG Y Z , et al. A comprehensive review of lipidomics and its application to assess food obtained from farm animals[J]. Food Sci Anim Resour, 2022, 42 (1): 1- 17.
doi: 10.5851/kosfa.2021.e59 |
8 |
HAN X L , GROSS R W . Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics[J]. J Lipid Res, 2003, 44 (6): 1071- 1079.
doi: 10.1194/jlr.R300004-JLR200 |
9 |
WENK M R . Lipidomics: new tools and applications[J]. Cell, 2010, 143 (6): 888- 895.
doi: 10.1016/j.cell.2010.11.033 |
10 |
CHARVE J , CHEN C , HEGEMAN A D , et al. Evaluation of instrumental methods for the untargeted analysis of chemical stimuli of orange juice flavour[J]. Flavour Fragr J, 2011, 26 (6): 429- 440.
doi: 10.1002/ffj.2078 |
11 |
李孟孟, 宋英华, 刘宝秀, 等. 基于液相色谱-质谱法脂质组学研究德州驴肌肉的脂质组成[J]. 食品科学, 2022, 43 (14): 249- 255.
doi: 10.7506/spkx1002-6630-20210816-200 |
LI M M , SONG Y H , LIU B X , et al. Lipid profiles of meat from donkeys in Dezhou analyzed by liquid chromatography-mass spectrometry-based lipidomics[J]. Food Science, 2022, 43 (14): 249- 255.
doi: 10.7506/spkx1002-6630-20210816-200 |
|
12 |
MAN L M , REN W , QIN H X , et al. Characterization of the relationship between lipids and volatile compounds in donkey, bovine, and sheep meat by UHPLC-ESI-MS and SPME-GC-MS[J]. LWT, 2023, 175, 114426.
doi: 10.1016/j.lwt.2023.114426 |
13 |
JIN Y X , CUI H X , YUAN X Y , et al. Identification of the main aroma compounds in Chinese local chicken high-quality meat[J]. Food Chem, 2021, 359, 129930.
doi: 10.1016/j.foodchem.2021.129930 |
14 |
WANG Y K , LIU L , LIU X J , et al. Identification of characteristic aroma compounds in chicken meat and their metabolic mechanisms using gas chromatography-olfactometry, odor activity values, and metabolomics[J]. Food Res Int, 2024, 175, 113782.
doi: 10.1016/j.foodres.2023.113782 |
15 |
WANG W T , SUN B , HU P , et al. Comparison of differential flavor metabolites in meat of Lubei white goat, Jining gray goat and Boer goat[J]. Metabolites, 2019, 9 (9): 176.
doi: 10.3390/metabo9090176 |
16 |
LI J , YANG Y Y , TANG C H , et al. Changes in lipids and aroma compounds in intramuscular fat from Hu sheep[J]. Food Chem, 2022, 383, 132611.
doi: 10.1016/j.foodchem.2022.132611 |
17 |
滕飞, 刘小琳, 钟强, 等. 基于风味组学和脂质组学分析不同品种原料鸭对卤鸭挥发性风味的影响[J]. 食品科学, 2024, 45 (12): 176- 186.
doi: 10.7506/spkx1002-6630-20230919-182 |
TENG F , LlU X L , ZHONG Q , et al. Flavoromic and lipidomic analysis of the effect of different breeds on volatile flavor components of pot-stewed duck[J]. Food Science, 2024, 45 (12): 176- 186.
doi: 10.7506/spkx1002-6630-20230919-182 |
|
18 |
WERNER E R , KELLER M A , SAILER S , et al. A novel assay for the introduction of the vinyl ether double bond into plasmalogens using pyrene-labeled substrates[J]. J Lipid Res, 2018, 59 (5): 901- 909.
doi: 10.1194/jlr.D080283 |
19 | DALLI J, COLAS R, WALKER M, et al. Lipid mediator metabolomics via LC-MS/MS profiling and analysis[M]//GIERA M. Clinical Metabolomics: Methods and Protocols. New York: Humana, 2018: 59-72. |
20 |
DASILVA G , MUÑOZ S , LOIS S , et al. Non-targeted LC-MS/MS assay for screening over 100 lipid mediators from ARA, EPA, and DHA in biological samples based on mass spectral fragmentations[J]. Molecules, 2019, 24 (12): 2276.
doi: 10.3390/molecules24122276 |
21 |
LI H H , GENG W H , HARUNA S A , et al. Identification of characteristic volatiles and metabolomic pathway during pork storage using HS-SPME-GC/MS coupled with multivariate analysis[J]. Food Chem, 2022, 373, 131431.
doi: 10.1016/j.foodchem.2021.131431 |
22 | 刘纯友, 江素珍, 冯笑, 等. HS-SPME-GC-MS测定三种类型百香果果实挥发性风味成分[J]. 食品工业科技, 2021, 42 (11): 255- 262. |
LIU C Y , JIANG S Z , FENG X , et al. Study on volatile flavor compounds from three types of passion fruit using headspace solid phase micro-extraction gas chromatography mass spectrometry[J]. Science and Technology of Food Industry, 2021, 42 (11): 255- 262. | |
23 | 张李智桐, 张佳敏, 王卫, 等. 酿酒酵母发酵四川腊肉贮藏期挥发性风味物质变化[J]. 食品科技, 2023, 48 (3): 123- 131. |
ZHANG L Z T , ZHANG J M , WANG W , et al. Changes in volatile flavor substances of Sichuan bacon fermented by saccharomyces cerevisiae during storage[J]. Food Science and Technology, 2023, 48 (3): 123- 131. | |
24 |
NAZARI M , MUDDIMAN D C . Enhanced lipidome coverage in shotgun analyses by using gas-phase fractionation[J]. J Am Soc Mass Spectrom, 2016, 27 (11): 1735- 1744.
doi: 10.1007/s13361-016-1446-5 |
25 |
MI S , SHANG K , JIA W , et al. Characterization and discrimination of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson) muscles using LC/MS-based lipidomics[J]. Food Res Int, 2018, 109, 187- 195.
doi: 10.1016/j.foodres.2018.04.038 |
26 |
LI C , LI X F , HUANG Q L , et al. Changes in the phospholipid molecular species in water-boiled salted duck during processing based on shotgun lipidomics[J]. Food Res Int, 2020, 132, 109064.
doi: 10.1016/j.foodres.2020.109064 |
27 |
ZHANG J , CAO J , GENG A L , et al. UHPLC-QTOF/MS-based comparative metabolomics in pectoralis major of fast- and slow-growing chickens at market ages[J]. Food Sci Nutr, 2022, 10 (2): 487- 498.
doi: 10.1002/fsn3.2673 |
28 |
HILGENDORF K I , JOHNSON C T , MEZGER A , et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis[J]. Cell, 2019, 179 (6): 1289- 1305.
doi: 10.1016/j.cell.2019.11.005 |
29 |
LI J , ZHANG J Q , YANG Y Y , et al. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers[J]. Food Res Int, 2021, 146, 110433.
doi: 10.1016/j.foodres.2021.110433 |
30 |
LI M M , ZHU M X , CHAI W Q , et al. Determination of the heterogeneity of intramuscular fat and visceral adipose tissue from Dezhou donkey by lipidomics and transcriptomics profiling[J]. Front Nutr, 2021, 8, 746684.
doi: 10.3389/fnut.2021.746684 |
31 |
ZHOU L , ZHAO M J , BINDLER F , et al. Identification of oxidation compounds of 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine during thermal oxidation[J]. J Agric Food Chem, 2015, 63 (43): 9615- 9620.
doi: 10.1021/acs.jafc.5b03753 |
32 |
BENET I , GUÀRDIA M D , IBAÑEZ C , et al. Low intramuscular fat (but high in PUFA) content in cooked cured pork ham decreased Maillard reaction volatiles and pleasing aroma attributes[J]. Food Chem, 2016, 196, 76- 82.
doi: 10.1016/j.foodchem.2015.09.026 |
33 | 洛桑催成, 次仁曲珍, 平措班旦, 等. 彭波半细毛羊羊肉风味物质的鉴定与分析[J]. 中国草食动物科学, 2023, 43 (6): 29- 34. |
LUO S C C , CI R Q Z , PING C B D , et al. Identification and analysis of flavour compounds in mutton of Pengbo semi-fine wool sheep[J]. China Herbivore Science, 2023, 43 (6): 29- 34. | |
34 | 刘春利. 不同日龄鸭肉主体风味物质的研究[D]. 宁波: 宁波大学, 2013. |
LIU C L. Study of age-related duck main flavor[D]. Ningbo: Ningbo University, 2013. (in Chinese) | |
35 |
LIU D Y , YANG C , BAI L , et al. Analysis of volatile compounds in Jinhua ham using three extraction methods combined with gas chromatography-time-of-flight mass spectrometry[J]. Foods, 2022, 11 (23): 3897.
doi: 10.3390/foods11233897 |
36 | 刘同, 杨悠悠, 刘大鹏, 等. 肉鸭胸肌特异挥发性风味物质的鉴定[J]. 畜牧兽医学报, 2022, 53 (2): 402- 413. |
LIU T , YANG Y Y , LIU D P , et al. Identification of specific volatile flavor compounds in breast muscle of meat duck[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (2): 402- 413. | |
37 | RANNOU C , TEXIER F , MOREAU M , et al. Odour quality of spray-dried hens'egg powders: the influence of composition, processing and storage conditions[J]. Food Chem, 2013, 138 (2/3): 905- 914. |
38 |
JIANG H , ZHANG M T , YE J J , et al. HS-SPME-GC-MS and OAV analyses of characteristic volatile flavour compounds in salt-baked drumstick[J]. LWT, 2022, 170, 114041.
doi: 10.1016/j.lwt.2022.114041 |
39 | 崔岩. 延边黄牛不同肌肉组织风味物质差异比较和代谢组学分析[D]. 延吉: 延边大学, 2021. |
CUI Y. Comparison of flavor compounds and metabolomics analysis in different muscle tissues of Yanbian yellow cattle[D]. Yanji: Yanbian University, 2021. (in Chinese) | |
40 |
LEGAKO J F , CRAMER T , YARDLEY K , et al. Retail stability of three beef muscles from grass-, legume-, and feedlot-finished cattle[J]. J Anim Sci, 2018, 96 (6): 2238- 2248.
doi: 10.1093/jas/sky125 |
41 | 姜家帅, 孙进华, 蒋守群, 等. 鸡肉挥发性风味物质成分、形成机制及脂质调控研究进展[J]. 动物营养学报, 2023, 35 (9): 5465- 5474. |
JIANG J S , SUN J H , JIANG S Q , et al. Research progress on components, formation mechanism and lipid regulation of volatile flavor substances in chicken[J]. Chinese Journal of Animal Nutrition, 2023, 35 (9): 5465- 5474. | |
42 | SUNG W C . Volatile constituents detected in smoke condensates from the combination of the smoking ingredients sucrose, black tea leaves, and bread flour[J]. J Food Drug Anal, 2013, 21 (3): 292- 300. |
43 | ZHANG L , HU Y Y , WANG Y , et al. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS[J]. LWT, 2021, 140, 110764. |
44 | DUAN M C , XU L G , GU T T , et al. Investigation into the characteristic volatile flavor of old duck[J]. Food Chem X, 2023, 20, 100899. |
45 | CHEN C , ZHOU W Y , YU H Y , et al. Evaluation of the perceptual interactions among aldehydes in a cheddar cheese matrix according to odor threshold and aroma intensity[J]. Molecules, 2020, 25 (18): 4308. |
[1] | 王一诺, 徐丹, 杨建华, 刘洋, 田尧夫, 赵小玲. 基于超声波测量胸肌厚预测肉鸡产肉性能的选育方法研究[J]. 畜牧兽医学报, 2024, 55(7): 2901-2912. |
[2] | 马帅, 王燕, 庄新娟, 王文正, 赵茹茜. 母鹅日粮添加甜菜碱通过IGFs信号通路促进子代胸肌肌纤维肥大[J]. 畜牧兽医学报, 2023, 54(12): 5112-5124. |
[3] | 张润, 刘海, 杨曼, 张龙超, 王源. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53(9): 3262-3271. |
[4] | 刘同, 杨悠悠, 刘大鹏, 于思梦, 郭占宝, 胡健, 赵金山, 周正奎, 侯水生. 肉鸭胸肌特异挥发性风味物质的鉴定[J]. 畜牧兽医学报, 2022, 53(2): 402-413. |
[5] | 徐垭烯, 胡健, 刘贺贺, 周正奎, 侯水生, 刘小林. 鸭颈胸椎数目变异与其相关性状遗传参数估计[J]. 畜牧兽医学报, 2019, 50(5): 939-946. |
[6] | 马友彪,张海军,王晶,武书庚,齐广海. 胚蛋给养β-羟基-β-甲基丁酸对肉仔鸡孵化率、生长性能和骨骼肌发育的影响[J]. 畜牧兽医学报, 2016, 47(11): 2248-2256. |
[7] | 冯京海;张敏红;郑姗姗;谢鹏;李军乔. 日循环高温对肉鸡线粒体活性氧产生量、钙泵活性及胸肌品质的影响[J]. 畜牧兽医学报, 2006, 37(12): 1304-1311. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||