畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (9): 2833-2844.doi: 10.11843/j.issn.0366-6964.2022.09.002
宗文成1, 王立刚1, 宋成义2, 王立贤1*, 张龙超1*
收稿日期:
2022-02-25
出版日期:
2022-09-23
发布日期:
2022-09-23
通讯作者:
王立贤,主要从事动物遗传育种研究,E-mail:iaswlx@163.com;张龙超,主要从事动物遗传育种研究,E-mail:zhlchias@163.com
作者简介:
宗文成(1994-),男,河北沧州人,博士,主要从事动物遗传育种研究,E-mail:82101211207@caas.cn
基金资助:
ZONG Wencheng1, WANG Ligang1, SONG Chengyi2, WANG Lixian1*, ZHANG Longchao1*
Received:
2022-02-25
Online:
2022-09-23
Published:
2022-09-23
摘要: 结构变异(structural variation,SV)广泛分布在基因组中,并主要以缺失、插入、重复、倒位和易位的形式出现。SV可以通过不同的机制直接或间接影响基因剂量,从而导致畜禽的表型变异,甚至引起疾病。随着分子生物学的发展和新基因组技术的进步,SV在猪基因组的研究越来越多,主要包括繁殖性状、肉质性状、生长性状、毛色、疾病等。本文参考了国内外相关报道,对SV的定义、分类、形成机制、检测方法以及在猪基因组的研究进展进行综述,并对目前SV研究存在的问题提出了建议以及未来的研究趋势进行了展望。
中图分类号:
宗文成, 王立刚, 宋成义, 王立贤, 张龙超. 猪基因组结构变异研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2833-2844.
ZONG Wencheng, WANG Ligang, SONG Chengyi, WANG Lixian, ZHANG Longchao. Advances of Structural Variation in Pig Genome[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2833-2844.
[1] | ROSES A D, AKKARI P A, CHIBA-FALEK O, et al.Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing[J].Expert Opin Drug Metab Toxicol, 2016, 12(2):135-147. |
[2] | CHIANG C, SCOTT A J, DAVIS J R, et al.The impact of structural variation on human gene expression[J].Nat Genet, 2017, 49(5):692-699. |
[3] | BICKHART D M, LIU G E.The challenges and importance of structural variation detection in livestock[J].Front Genet, 2014, 5:37. |
[4] | ZHANG F, GU W L, HURLES M E, et al.Copy number variation in human health, disease, and evolution[J].Annu Rev Genomics Hum Genet, 2009, 10:451-481. |
[5] | PETROV D A.Mutational equilibrium model of genome size evolution[J].Theor Popul Biol, 2002, 61(4):531-544. |
[6] | OLSON M V.When less is more:Gene loss as an engine of evolutionary change[J].Am J Hum Genet, 1999, 64(1):18-23. |
[7] | BRIDGES C B. Triploid intersexes in drosophila melanogaster[J]. Science, 1921, 54(1394):252-254. |
[8] | BRIDGES C B. The Bar "gene" a duplication[J]. Science, 1936, 83(2148):210-211. |
[9] | KNUDSEN O.Studies on spermiocytogenesis in the bull[J].Obstet Gynecol Surv, 1959, 14(3):404-405. |
[10] | 经珍珠, 秦盼盼, 陈冰洁, 等.拷贝数变异在畜禽中的研究进展[J].中国畜牧兽医, 2021, 48(7):2512-2522.JING Z Z, QIN P P, CHEN B J, et al.Research progress of copy number variation in livestock and poultry[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(7):2512-2522.(in Chinese) |
[11] | 金美林, 卢增奎, 李 青, 等.畜禽拷贝数变异研究进展[J].农业生物技术学报, 2019, 27(10):1840-1848.JIN M L, LU Z K, LI Q, et al.Research progress on copy number variation of livestock and poultry[J].Journal of Agricultural Biotechnology, 2019, 27(10):1840-1848.(in Chinese) |
[12] | CHEN C, WANG W, WANG X Y, et al.Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs[J]. Mob DNA, 2019, 10:19. |
[13] | CHEN C, D'ALESSANDRO E, MURANI E, et al.SINE jumping contributes to large-scale polymorphisms in the pig genomes[J].Mob DNA, 2021, 12(1):17. |
[14] | ZHOU Z Y, LI A M, OTECKO N O, et al.PigVar:A database of pig variations and positive selection signatures[J]. Database, 2017, 2017:bax048. |
[15] | FEUK L, CARSON A R, SCHERER S W.Structural variation in the human genome[J].Nat Rev Genet, 2006, 7(2):85-97. |
[16] | REDON R, ISHIKAWA S, FITCH K R, et al.Global variation in copy number in the human genome[J]. Nature, 2006, 444(7118):444-454. |
[17] | STANKIEWICZ P, LUPSKI J R.Structural variation in the human genome and its role in disease[J].Annu Rev Med, 2010, 61:437-455. |
[18] | LI J F, KANNAN M, TRIVETT A L, et al.An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition[J].Nucleic Acids Res, 2014, 42(7):4546-4562. |
[19] | DING M T, LIU Y H, LIAO X H, et al.Enhancer RNAs (eRNAs):new insights into gene transcription and disease treatment[J].J Cancer, 2018, 9(13):2334-2340. |
[20] | ROMÁN A C, GONZÁLEZ-RICO F J, MOLTÓ E, et al.Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch[J].Genome Res, 2011, 21(3):422-432. |
[21] | MASTRANGELO M F, WEINSTOCK K G, SHAFER B K, et al.Disruption of a silencer domain by a retrotransposon[J]. Genetics, 1992, 131(3):519-529. |
[22] | MOORE R C, PURUGGANAN M D.The early stages of duplicate gene evolution[J].Proc Natl Acad Sci U S A, 2003, 100(26):15682-15687. |
[23] | ALKAN C, COE B P, EICHLER E E.Genome structural variation discovery and genotyping[J].Nat Rev Genet, 2011, 12(5):363-376. |
[24] | STANKIEWICZ P, LUPSKI J R.Molecular-evolutionary mechanisms for genomic disorders[J].Curr Opin Genet Dev, 2002, 12(3):312-319. |
[25] | ZHANG F, KHAJAVI M, CONNOLLY A M, et al.The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans[J].Nat Genet, 2009, 41(7):849-853. |
[26] | VAN GENT D C, VAN DER BURG M.Non-homologous end-joining, a sticky affair[J].Oncogene, 2007, 26(56):7731-7740. |
[27] | GU W L, ZHANG F, LUPSKI J R.Mechanisms for human genomic rearrangements[J].Pathogenetics, 2008, 1(1):4. |
[28] | INOUE K, OSAKA H, THURSTON V C, et al.Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females[J].Am J Hum Genet, 2002, 71(4):838-853. |
[29] | SHAW C J, LUPSKI J R.Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms[J]. Hum Genet, 2005, 116(1-2):1-7. |
[30] | LIEBER M R, GU J F, LU H H, et al.Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans[M]//NASHEUER H P.Genome Stability and Human Diseases.Dordrecht:Springer, 2010:279-296. |
[31] | LÖNNIG W E, SAEDLER H.Chromosome rearrangements and transposable elements[J].Annu Rev Genet, 2002, 36:389-410. |
[32] | PLATT II R N, VANDEWEGE M W, RAY D A.Mammalian transposable elements and their impacts on genome evolution[J]. Chromosome Res, 2018, 26(1-2):25-43. |
[33] | QUAN C, LI Y F, LIU X Y, et al.Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression[J].Genome Biol, 2021, 22(1):159. |
[34] | SEDLAZECK F J, LEE H, DARBY C A, et al.Piercing the dark matter:bioinformatics of long-range sequencing and mapping[J]. Nat Rev Genet, 2018, 19(6):329-346. |
[35] | HO S S, URBAN A E, MILLS R E.Structural variation in the sequencing era[J].Nat Rev Genet, 2020, 21(3):171-189. |
[36] | DE COSTER W, VAN BROECKHOVEN C.Newest methods for detecting structural variations[J].Trends Biotechnol, 2019, 37(9):973-982. |
[37] | AUDANO P A, SULOVARI A, GRAVES-LINDSAY T A, et al.Characterizing the major structural variant alleles of the human genome[J].Cell, 2019, 176(3):663-675.e19. |
[38] | CHAISSON M J P, SANDERS A D, ZHAO X F, et al.Multi-platform discovery of haplotype-resolved structural variation in human genomes[J].Nat Commun, 2019, 10(1):1784. |
[39] | SHAO H J, GANESAMOORTHY D, DUARTE T, et al.npInv:accurate detection and genotyping of inversions using long read sub-alignment[J].BMC Bioinformatics, 2018, 19(1):261. |
[40] | HELLER D, VINGRON M.SVIM:structural variant identification using mapped long reads[J].Bioinformatics, 2019, 35(17):2907-2915. |
[41] | PACIFIC BIOSCIENCES.Pbsv.Github, 2018. |
[42] | SEO J S, RHIE A, KIM J, et al.De novo assembly and phasing of a Korean human genome[J].Nature, 2016, 538(7624):243-247. |
[43] | LOW W Y, TEARLE R, LIU R J, et al.Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J].Nat Commun, 2020, 11(1):2071. |
[44] | ZHU F, YIN Z T, WANG Z, et al.Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication[J].Nat Commun, 2021, 12(1):5932. |
[45] | ZHOU R, LI S T, YAO W Y, et al.The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication[J].Mol Ecol Resour, 2021, 21(6):2077-2092. |
[46] | ZHANG L, HUANG Y M, WANG M, et al.Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease[J].iScience, 2019, 19:162-176. |
[47] | GUSTAVSSON I.Chromosomes of the pig[J].Adv Vet Sci Comp Med, 1990, 34:73-107. |
[48] | KEEL B N, NONNEMAN D J, LINDHOLM-PERRY A K, et al.A survey of copy number variation in the porcine genome detected from whole-genome sequence[J].Front Genet, 2019, 10:737. |
[49] | WU Q, ZHOU Y, WANG Y, et al.Whole-genome sequencing reveals breed-differential CNVs between Tongcheng and Large White pigs[J].Anim Genet, 2020, 51(6):940-944. |
[50] | DU H, ZHENG X R, ZHAO Q Q, et al.Analysis of structural variants reveal novel selective regions in the genome of Meishan pigs by whole genome sequencing[J].Front Genet, 2021, 12:550676. |
[51] | ZHAO P J, LI J H, KANG H M, et al.Structural variant detection by large-scale sequencing reveals new evolutionary evidence on breed divergence between Chinese and European pigs[J].Sci Rep, 2016, 6:18501. |
[52] | LIU C, RAN X Q, YU C Y, et al.Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes[J].Genomics, 2019, 111(3):310-319. |
[53] | RAN X Q, PAN H, HUANG S H, et al.Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig[J].J Anim Physiol Anim Nutr (Berl), 2018, 102(5):1320-1327. |
[54] | LIU C, RAN X Q, NIU X, et al.Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs[J].Anim Reprod Sci, 2018, 195:16-23. |
[55] | ZHENG X R, ZHAO P J, YANG K J, et al.CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits[J].J Anim Sci Biotechnol, 2020, 11:42. |
[56] | WANG Y, ZHANG T R, WANG C D.Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip[J].J Anim Breed Genet, 2020, 137(2):166-176. |
[57] | WANG L G, XU L Y, LIU X, et al.Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine[J].Sci Rep, 2015, 5:12535. |
[58] | WANG L G, ZHAO L L, ZHANG L C, et al.NTN1 affects porcine intramuscular fat content by affecting the expression of myogenic regulatory factors[J].Animals, 2019, 9(9):609. |
[59] | WANG L G, ZHANG T, LI N, et al. Copy number variations contribute to intramuscular fat content differences by affecting the expression of PELP1 alternative splices in pig[J]. Animals, 2022:12(11):1382. |
[60] | YOSHIDOMI T, TANAKA K, TAKIZAWA T, et al.Copy number variation of amylase alpha 2B gene is associated with feed efficiency traits in Large White pigs[J].Czech J Anim Sci, 2021, 66:495-503. |
[61] | REVILLA M, PUIG-OLIVERAS A, CASTELLÓ A, et al.A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits[J].PLoS One, 2017, 12(5):e0177014. |
[62] | QIU Y B, DING R R, ZHUANG Z W, et al.Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs[J].BMC Genomics, 2021, 22(1):332. |
[63] | MA H M, JIANG J, HE J, et al.Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds[J].Mol Ecol Resour, 2022, 22(4):1508-1520. |
[64] | SANFORD E.Pigs:A handbook to the breeds of the world[J].Can Vet J, 1994, 35(11):719-720. |
[65] | CHABOT B, STEPHENSON D A, CHAPMAN V M, et al.The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus[J].Nature, 1988, 335(6185):88-89. |
[66] | RUBIN C J, MEGENS H J, BARRIO A M, et al.Strong signatures of selection in the domestic pig genome[J].Proc Natl Acad Sci U S A, 2012, 109(48):19529-19536. |
[67] | GIUFFRA E, TÖRNSTEN A, MARKLUND S, et al.A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT[J].Mamm Genome, 2002, 13(10):569-577. |
[68] | WU Z P, DENG Z, HUANG M, et al.Whole-genome resequencing identifies KIT new alleles that affect coat color phenotypes in pigs[J].Front Genet, 2019, 10:218. |
[69] | QIN K, LIANG X Y, SUN G J, et al.Highly efficient correction of structural mutations of 450 kb KIT locus in kidney cells of Yorkshire pig by CRISPR/Cas9[J].BMC Mol Cell Biol, 2019, 20(1):4. |
[70] | HUANG M, ZHANG H, WU Z P, et al.Whole-genome resequencing reveals genetic structure and introgression in Pudong White pigs[J].Animal, 2021, 15(10):100354. |
[71] | XU J Y, FU Y H, HU Y, et al.Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features[J].J Anim Sci Biotechnol, 2020, 11(1):115. |
[72] | YANG Y, ADEOLA A C, XIE H B, et al.Genomic and transcriptomic analyses reveal selection of genes for puberty in Bama Xiang pigs[J].Zool Res, 2018, 39(6):424-430. |
[73] | SIRONEN A, UIMARI P, VENHORANTA H, et al.An exonic insertion within Tex14 gene causes spermatogenic arrest in pigs[J]. BMC Genomics, 2011, 12:591. |
[74] | LI W H, CHEN S X, LI H J, et al.A new insertion/deletion fragment polymorphism of inhibin-α gene associated with follicular cysts in Large White sows[J].J Vet Med Sci, 2016, 78(3):473-476. |
[75] | GRAHOFER A, LETKO A, HÄFLIGER I M, et al.Chromosomal imbalance in pigs showing a syndromic form of cleft palate[J]. BMC Genomics, 2019, 20(1):349. |
[76] | FOWLER K E, PONG-WONG R, BAUER J, et al.Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds[J].BMC Genomics, 2013, 14:784. |
[77] | DONG K, PU Y, YAO N, et al.Copy number variation detection using SNP genotyping arrays in three Chinese pig breeds[J].Anim Genet, 2015, 46(2):101-109. |
[78] | LONG Y, SU Y, AI H S, et al.A genome-wide association study of copy number variations with umbilical hernia in swine[J].Anim Genet, 2016, 47(3):298-305. |
[79] | STACHOWIAK M, SZCZERBAL I, NOWACKA-WOSZUK J, et al.Polymorphisms in the SOX9 region and testicular disorder of sex development (38, XX;SRY-negative) in pigs[J].Livest Sci, 2017, 203:48-53. |
[80] | HAY E H A, CHOI I, XU L Y, et al.CNV analysis of host responses to porcine reproductive and respiratory syndrome virus infection[J].J Genomics, 2017, 5:58-63. |
[81] | WANG X Y, CHEN Z X, MURANI E, et al.A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1[J].Mob DNA, 2021, 12(1):20. |
[82] | NGUYEN D T, LEE K, CHOI H, et al.The complete swine olfactory subgenome:Expansion of the olfactory gene repertoire in the pig genome[J].BMC Genomics, 2012, 13:584. |
[83] | GROENEN M A M, ARCHIBALD A L, UENISHI H, et al.Analyses of pig genomes provide insight into porcine demography and evolution[J].Nature, 2012, 491(7424):393-398. |
[84] | WANG C B, CHEN H, WANG X P, et al.Identification of copy number variations using high density whole-genome single nucleotide polymorphism markers in Chinese Dongxiang spotted pigs[J].Asian-Australas J Anim Sci, 2019, 32(12):1809-1815. |
[85] | ZHANG L, HUANG Y M, SI J L, et al.Comprehensive inbred variation discovery in Bama pigs using de novo assemblies[J]. Gene, 2018, 679:81-89. |
[86] | PAUDEL Y, MADSEN O, MEGENS H J, et al.Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication[J].BMC Genomics, 2013, 14:449. |
[87] | PAUDEL Y, MADSEN O, MEGENS H J, et al.Copy number variation in the speciation of pigs:A possible prominent role for olfactory receptors[J].BMC Genomics, 2015, 16(1):330. |
[88] | CHEN C Y, LIU C L, XIONG X W, et al.Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p[J].Genet Sel Evol, 2018, 50(1):72. |
[89] | LIU X L, HU F B, HUANG S H, et al.Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing[J].Aging, 2021, 13(22):24710-24739. |
[1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[2] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[3] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[4] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[5] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[6] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[7] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[8] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[9] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[10] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[11] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[12] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[13] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[14] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[15] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||