畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (6): 1461-1470.doi: 10.11843/j.issn.0366-6964.2021.06.002
刘倩, 岳静伟, 牛乃琪, 王立贤*, 张龙超*
收稿日期:
2020-12-04
出版日期:
2021-06-23
发布日期:
2021-06-22
通讯作者:
张龙超,主要从事猪遗传育种研究,E-mail:zhanglongchao@caas.cn;王立贤,主要从事猪遗传育种研究,E-mail:wanglixian@caas.cn
作者简介:
刘倩(1994-),女,河北石家庄人,硕士生,主要从事猪遗传育种研究,E-mail:liuqian521818@163.com
基金资助:
LIU Qian, YUE Jingwei, NIU Naiqi, WANG Lixian*, ZHANG Longchao*
Received:
2020-12-04
Online:
2021-06-23
Published:
2021-06-22
摘要: 脊椎是哺乳动物整个躯体的支柱,具有较高的遗传力,且可对胴体长产生重要影响。不同物种之间的脊椎数量互不相同,甚至同一物种如猪、羊等物种内也存在变异。脊椎数主要受胚胎体节发育时期体节数量的影响,为了进一步探究脊椎形成和数量变异的调控机制,本文综述了脊椎的胚胎发育过程、重要中间结构体节的形成和调控因素,旨在阐明脊椎形成和发育的调控机制,进而为经济动物脊椎数的选育改良提供理论依据和研究思路。
中图分类号:
刘倩, 岳静伟, 牛乃琪, 王立贤, 张龙超. 脊椎动物胚胎期脊椎的形成及信号通路调控机制[J]. 畜牧兽医学报, 2021, 52(6): 1461-1470.
LIU Qian, YUE Jingwei, NIU Naiqi, WANG Lixian, ZHANG Longchao. The Regulation Mechanism and Signal Pathway for Spine Formation in Vertebrate Embryo[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1461-1470.
[1] | YOSHIOKA-KOBAYASHI K,MATSUMIYA M,NIINO Y,et al.Coupling delay controls synchronized oscillation in the segmentation clock[J].Nature,2020,580(7801):119-123. |
[2] | DURSTON A J,PERES J,COHEN M H.Spiral waves and vertebrate embryonic handedness[J].J Biosci,2018,43(2):375-390. |
[3] | DUAN Y Y,ZHANG H,ZHANG Z,et al.Vrtn is required for the development of thoracic vertebrae in mammals[J].Int J Biol Sci,2018,14(6):667-681. |
[4] | LI C Y,LI M,LI X Y,et al.Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep[J].Front Genet,2019,10:674. |
[5] | NELEMANS B K A,SCHMITZ M,TAHIR H,et al.Somite division and new boundary formation by mechanical strain[J]. iScience, 2020,23(4):100976. |
[6] | GOMEZ C,POURQUIÉ O.Developmental control of segment numbers in vertebrates[J].J Exp Zool B Mol Dev Evol,2009, 312(6):533-544. |
[7] | DEQUÉANT M L,POURQUIÉ O.Segmental patterning of the vertebrate embryonic axis[J].Nat Rev Genet,2008,9(5):370-382. |
[8] | VROOMANS R M A,HOGEWEG P,TEN TUSSCHER K H W J.Around the clock:gradient shape and noise impact the evolution of oscillatory segmentation dynamics[J].EvoDevo,2018,9:24. |
[9] | COOKE J,ZEEMAN E C.A clock and wavefront model for control of the number of repeated structures during animal morphogenesis[J].J Theor Biol,1976,58(2):455-476. |
[10] | PALLA A,BLAU H.The clock that controls spine development modelled in a dish[J].Nature,2020,580(7801):32-34. |
[11] | ALEXANDER T,NOLTE C,KRUMLAUF R.Hox genes and segmentation of the hindbrain and axial skeleton[J].Annu Rev Cell Dev Biol,2009,25:431-456. |
[12] | ANDERSON M J,SCHIMMANG T,LEWANDOSKI M.An FGF3-BMP signaling axis regulates caudal neural tube closure,neural crest specification and anterior-posterior axis extension[J].PLoS Genet,2016,12(5):e1006018. |
[13] | DIAZ-CUADROS M,WAGNER D E,BUDJAN C,et al.In vitro characterization of the human segmen-tation clock[J].Nature, 2020,580(7801):113-118. |
[14] | 张红卫.发育生物学[M].2版.北京:高等教育出版社,2006.ZHANG H W.Developmental biology[M].2nd ed.Beijing:Higher Education Press,2006.(in Chinese) |
[15] | AMINI Z,MAHDAVI-SHAHRI N,LARI R,et al.The effects of lead on the development of somites in chick embryos (Gallus gallus domesticus) under in vitro conditions:a histological study[J].Toxicol Res (Camb),2019,8(3):373-380. |
[16] | DURSTON A J.Two tier Hox collinearity mediates vertebrate axial patterning[J].Front Cell Dev Biol,2018,6:102. |
[17] | HASHIGUCHI M,MULLINS M C.Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock[J].Development,2013,140(9):1970-1980. |
[18] | DENANS N,IIMURA T,POURQUIÉ O.Hox genes control vertebrate body elongation by collinear Wnt repression[J]. Elife,2015,4:e04379. |
[19] | WYMEERSCH F J,SKYLAKI S,HUANG Y L,et al.Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning[J].Development,2019,146(1):dev168161. |
[20] | MOREAU C,CALDARELLI P,ROCANCOURT D,et al.Timed collinear activation of Hox genes during gastrulation controls the avian forelimb position[J].Curr Biol,2019,29(1):35-50.e1-e4. |
[21] | DURSTON A J.What are the roles of retinoids,other morphogens,and Hox genes in setting up the vertebrate body axis?[J].Genesis,2019,57(7-8):e23296. |
[22] | MISHINA Y,HANKS M C,MIURA S,et al.Generation of Bmpr/Alk3 conditional knockout mice[J].Genesis, 2002,32(2):69-72. |
[23] | YU P B,DENG D Y,LAI C S,et al.BMP type I receptor inhibition reduces heterotopic ossification[J].Nat Med,2008,14(12):1363-1369. |
[24] | MISHINA Y,STARBUCK M W,GENTILE M A,et al.Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling[J].J Biol Chem,2004,279(26):27560-27566. |
[25] | MISHINA Y.Function of bone morphogenetic protein signaling during mouse development[J].Front Biosci,2003,8:d855-d869. |
[26] | MIURA S,DAVIS S,KLINGENSMITH J,et al.BMP signaling in the epiblast is required for proper recruitment of the prospective paraxial mesoderm and development of the somites[J].Development,2006,133(19):3767-3775. |
[27] | QI H B,JIN M,DUAN Y Q,et al.FGFR3 induces degradation of BMP type I receptor to regulate skeletal development[J].Biochim Biophys Acta Mol Cell Res,2014,1843(7):1237-1247. |
[28] | BÖHMER C.Correlation between Hox code and vertebral morphology in the mouse:towards a universal model for synapsida[J].Zoological Lett,2017,3:8. |
[29] | KESSEL M,GRUSS P.Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid[J].Cell,1991,67(1):89-104. |
[30] | JUAN A H,LEI H,BHARGAVA P,et al.Multiple roles of Hoxc8 in skeletal development[J].Ann N Y Acad Sci,2006, 1068(1):87-94. |
[31] | WELLIK D M,CAPECCHI M R.Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton[J]. Science,2003,301(5631):363-367. |
[32] | MCINTYRE D C,RAKSHIT S,YALLOWITZ A R,et al.Hox patterning of the vertebrate rib cage[J].Development, 2007,134(16):2981-2989. |
[33] | ZÁKÁNY J,KMITA M,ALARCON P,et al.Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock[J].Cell,2001,106(2):207-217. |
[34] | AULEHLA A,WEHRLE C,BRAND-SABERI B,et al.Wnt3a plays a major role in the segmentation clock controlling somitogenesis[J].Dev Cell,2003,4(3):395-406. |
[35] | CHU L F,MAMOTT D,NI Z J,et al.An in vitro human segmentation clock model derived from embryonic stem cells[J].Cell Rep,2019,28(9):2247-2255.e1-e5. |
[36] | XI H B,FUJIWARA W,GONZALEZ K,et al.In vivo human somitogenesis guides somite development from hPSCs[J].Cell Rep,2017,18(6):1573-1585. |
[37] | MORGANI S M,SAIZ N,GARG V,et al.A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice[J].Dev Biol,2018,441(1):104-126. |
[38] | SONNEN K F,LAUSCHKE V M,URAJI J,et al.Modulation of phase shift between Wnt and notch signaling oscillations controls mesoderm segmentation[J].Cell,2018,172(5):1079-1090.e1-e3. |
[39] | DUBRULLE J,MCGREW M J,POURQUIÉ O.FGF signaling controls somite boundary position and regulates segmentation clock control of spatio-temporal Hox gene activation[J].Cell,2001,106(2):219-232. |
[40] | NAOKI H,AKIYAMA R,SARI D W K,et al.Noise-resistant developmental reproducibility in vertebrate somite formation[J]. PLoS Comput Biol,2019,15(2):e1006579. |
[41] | GRUSS P,KESSEL M.Axial specification in higher vertebrates[J].Curr Opin Genet Dev,1991,1(2):204-210. |
[42] | KAWAKAMI Y,RAYA Á,RAYA R M,et al.Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo[J].Nature,2005,435(7039):165-171. |
[43] | VERMOT J,POURQUIÉ O.Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos[J]. Nature,2005,435(7039):215-220. |
[44] | BRUECKNER M,D'EUSTACHIO P,HORWICH A L.Linkage mapping of a mouse gene,iv,that controls left-right asymmetry of the heart and viscera[J].Proc Natl Acad Sci U S A,1989,86(13):5035-5038. |
[45] | RANKIN S A,MCCRACKEN K W,LUEDEKE D M,et al.Timing is everything:reiterative Wnt,BMP and RA signaling regulate developmental competence during endoderm organogenesis[J].Dev Biol,2018,434(1):121-132. |
[46] | KESKIN S,DEVAKANMALAI G S,KWON S B,et al.Noise in the vertebrate segmentation clock is boosted by time delays but tamed by notch signaling[J].Cell Rep,2018,23(7):2175-2185.e1-e4. |
[47] | CARRIERI F A,MURRAY P J,DITSOVA D,et al.CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock[J].EMBO Rep,2019,20(7):e46436. |
[48] | NAOKI H,MATSUI T.Somite boundary determination in normal and clock-less vertebrate embryos[J].Dev Growth Differ,2020,62(3):177-187. |
[49] | HORMUTH D A,WEIS J A,BARNES S L,et al.A mechanically coupled reaction-diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth[J].J R Soc Interface,2017,14(128):20161010. |
[50] | LI D L,HALLACK A,CLEVELAND R O,et al.3D multicellular model of shock wave-cell interaction[J].Acta Biomater,2018,77:282-291. |
[51] | SCHNELL S,MAINI P K.Clock and induction model for somitogenesis[J].Dev Dyn,2000,217(4):415-420. |
[52] | LIAO B K,OATES A C.Delta-Notch signalling in segmentation[J].Arthropod Struct Dev,2017,46(3):429-447. |
[53] | PAIS-DE-AZEVEDO T,MAGNO R,DUARTE I,et al.Recent advances in understanding vertebrate segmentation[version 1; peer review:3 approved] [J].F1000Res,2018,7:97. |
[54] | VENZIN O F,OATES A C.What are you synching about? Emerging complexity of notch signaling in the segmentation clock[J].Dev Biol,2020,460(1):40-54. |
[55] | MORRISS-KAY G M,MURPHY P,HILL R E,et al.Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos[J].EMBO J,1991,10(10):2985-2995. |
[56] | MATSUDA M,YAMANAKA Y,UEMURA M,et al.Recapitulating the human segmentation clock with pluripotent stem cells[J].Nature,2020,580(7801):124-129. |
[57] | MATSUMIYA M,TOMITA T,YOSHIOKA-KOBAYASHI K,et al.ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock[J].Development,2018,145(4):dev156836. |
[58] | PALMEIRIM I,HENRIQUE D,ISH-HOROWICZ D,et al.Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis[J].Cell,1997,91(5):639-648. |
[59] | YOSHIOKA-KOBAYASHI K,KAGEYAMA R.Imaging and manipulating the segmentation clock[J].Cell Mol Life Sci,2021,78(4):1221-1231. |
[60] | GOLDBETER A,GONZE D,POURQUIÉO.Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling[J].Dev Dyn,2007,236(6):1495-1508. |
[61] | MORIMOTO M,TAKAHASHI Y,ENDO M,et al.The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity[J].Nature,2005,435(7040):354-359. |
[62] | DELFINI M C,DUBRULLE J,MALAPERT P,et al.Control of the segmentation process by graded MAPK/ERK activation in the chick embryo[J].Proc Natl Acad Sci U S A,2005,102(32):11343-11348. |
[63] | MORENO T A,KINTNER C.Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis[J]. Dev Cell,2004,6(2):205-218. |
[64] | KAGEYAMA R,SHIMOJO H,ISOMURA A.Oscillatory control of notch signaling in development[M]//BORGGREFE T,GIAIMO B D.Molecular Mechanisms of Notch Signaling.Cham:Springer,2018:265-277. |
[65] | SPARROW D B,GUILLÉN-NAVARRO E,FATKIN D,et al.Mutation of HAIRY-AND-ENHANCER-OF-SPLIT-7 in humans causes spondylocostal dysostosis[J].Hum Mol Genet,2008,17(23):3761-3766. |
[66] | HUBAUD A,POURQUIÉ O.Signalling dynamics in vertebrate segmentation[J].Nat Rev Mol Cell Biol,2014,15(11):709-721. |
[67] | OATES A C,MORELLI L G,ARES S.Patterning embryos with oscillations:structure,function and dynamics of the vertebrate segmentation clock[J].Development,2012,139(4):625-639. |
[68] | HUBAUD A,REGEV I,MAHADEVAN L,et al.Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock[J].Cell,2017,171(3):668-682.e1-e6. |
[69] | BESSHO Y,SAKATA R,KOMATSU S,et al.Dynamic expression and essential functions of Hes7 in somite segmentation[J]. Genes Dev,2001,15(20):2642-2647. |
[70] | NIWA Y,MASAMIZU Y,LIU T X,et al.The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock[J].Dev Cell,2007,13(2):298-304. |
[71] | BESSHO Y,HIRATA H,MASAMIZU Y,et al.Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock[J].Genes Dev,2003,17(12):1451-1456. |
[72] | TAKASHIMA Y,OHTSUKA T,GONZÁLEZ A,et al.Intronic delay is essential for oscillatory expression in the segmentation clock[J].Proc Natl Acad Sci U S A,2011,108(8):3300-3305. |
[73] | HIRATA H,BESSHO Y,KOKUBU H,et al.Instability of Hes7 protein is crucial for the somite segmentation clock[J].Nat Genet,2004,36(7):750-754. |
[74] | SPARROW D B,CHAPMAN G,SMITH A J,et al.A mechanism for gene-environment interaction in the etiology of congenital scoliosis[J].Cell,2012,149(2):295-306. |
[75] | HARIMA Y,TAKASHIMA Y,UEDA Y,et al.Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene[J].Cell Rep,2013,3(1):1-7. |
[1] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[2] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[3] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[4] | 田启会, 张亮, 龙亚丽. 黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J]. 畜牧兽医学报, 2024, 55(1): 346-354. |
[5] | 韩坤良, 兰伟, 胡新, 崔亚东, 孔祥峰. 复方中药超微粉对蛋鸡抗氧化性能及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(9): 3784-3792. |
[6] | 李悦欣, 刘爱菊, 马晓菲, 郑忠, 胡伯欣, 智云霞, 田树军. TGFβR1介导TGF-β/Smad信号通路对绵羊颗粒细胞功能的影响[J]. 畜牧兽医学报, 2023, 54(8): 3335-3347. |
[7] | 张鹏, 王明秀, 敬科民, 彭巍, 田园, 李雨谦, 付长其, 舒适, 钟金城, 蔡欣. FGFs/FGFRs及其介导信号通路基因的异常表达影响犏牛未分化精原细胞增殖活性[J]. 畜牧兽医学报, 2023, 54(7): 2886-2897. |
[8] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
[9] | 陈永平, 寇玉红, 焦文静, 侯晓昱, 范宏刚. 辅酶Q10改善LPS诱导小鼠急性肺损伤的效应分析[J]. 畜牧兽医学报, 2023, 54(4): 1730-1741. |
[10] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. |
[11] | 张成成, 孙嘉豪, 王秀玲, 张小荣, 吴艳涛. 猪瘟病毒非结构蛋白NS5A与Beclin1相互作用并促进病毒增殖[J]. 畜牧兽医学报, 2023, 54(2): 715-725. |
[12] | 张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909. |
[13] | 任秀娟, 康德措, 苏少锋, 蔺雅楠, 李雅静, 杜明, 白东义, 李蓓, 赵一萍, 芒来. 蒙古马和纯血马免疫相关基因差异表达分析[J]. 畜牧兽医学报, 2023, 54(12): 5020-5032. |
[14] | 赵亚亚, 常江, 剧柠, 罗玉龙. 日粮中添加植物多酚调控肉色稳定性的作用机制[J]. 畜牧兽医学报, 2023, 54(1): 36-47. |
[15] | 牛乃琪, 苏艳芳, 杨曼, 侯欣华, 王立刚, 张龙超. 北京黑猪HoxB簇基因多态性与脊椎数及胴体性状的关联分析[J]. 畜牧兽医学报, 2023, 54(1): 113-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||