1 |
俞懿春, 邢雪, 邵玉姿. 美丽中国, 人与自然和谐共生[N]. 人民日报, 2023-08-06(03).
|
|
YU Y C, XING X, SHAO Y Z. Beautiful China, harmonious co-existence of human and nature[N]. People's Daily, 2023-08-06(03). (in Chinese)
|
2 |
国家林业和草原局宣传中心. 林草动态: 人与自然和谐共生, 绘就美丽中国新画卷[R/OL]. [2023-08-19]. http://www.forestry.gov.cn/lyj/1/lcdt/20230819/517998.html.
|
|
Propaganda Center of National Forestry and Grassland Administration. Dynamic forest and grass: Harmonious coexistence of man and nature, beautiful Chinese painting[R/OL]. [2023-08-19]. http://www.forestry.gov.cn/lyj/1/lcdt/20230819/517998.html. (in Chinese)
|
3 |
HAYWARD G S . Conservation: clarifying the risk from herpesvirus to captive Asian elephants[J]. Vet Rec, 2012, 170 (8): 202- 203.
doi: 10.1136/vr.e1212
|
4 |
SAHOO N , SAHU S K , DAS A K , et al. Elephant endotheliotropic herpesvirus hemorrhagic disease outbreak in an Indian zoo[J]. J Zoo Wildl Med, 2021, 52 (4): 1286- 1297.
|
5 |
杨念, 张立. 象亲内皮疱疹病毒及其研究进展[J]. 生物学通报, 2020, 55 (8): 4- 6.
|
|
YANG N , ZHANG L . Elephant endothelial Herpesvirus and its research updates[J]. Bulletin of Biology, 2020, 55 (8): 4- 6.
|
6 |
ZHANG P , CHEN Y , LI S Y , et al. Metagenomic next-generation sequencing for the clinical diagnosis and prognosis of acute respiratory distress syndrome caused by severe pneumonia: a retrospective study[J]. PeerJ, 2020, 8, e9623.
doi: 10.7717/peerj.9623
|
7 |
BOLGER A M , LOHSE M , USADEL B . Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30 (15): 2114- 2120.
doi: 10.1093/bioinformatics/btu170
|
8 |
LANGDON W B . Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks[J]. BioData Min, 2015, 8 (1): 1.
doi: 10.1186/s13040-014-0034-0
|
9 |
WOOD D E , LU J , LANGMEAD B . Improved metagenomic analysis with Kraken 2[J]. Genome Biol, 2019, 20 (1): 257.
doi: 10.1186/s13059-019-1891-0
|
10 |
LU J , RINCON N , WOOD D E , et al. Metagenome analysis using the Kraken software suite[J]. Nat Protoc, 2022, 17 (12): 2815- 2839.
doi: 10.1038/s41596-022-00738-y
|
11 |
ONDOV B D , BERGMAN N H , PHILLIPPY A M . Interactive metagenomic visualization in a Web browser[J]. BMC Bioinformatics, 2011, 12, 385.
doi: 10.1186/1471-2105-12-385
|
12 |
LATIMER E , ZONG J C , HEAGGANS S Y , et al. Detection and evaluation of novel herpesviruses in routine and pathological samples from Asian and African elephants: identification of two new probosciviruses (EEHV5 and EEHV6) and two new gammaherpesviruses (EGHV3B and EGHV5)[J]. Vet Microbiol, 2011, 147 (1/2): 28- 41.
|
13 |
GUNTAWANG T , SITTISAK T , KOCHAGUL V , et al. Pathogenesis of hemorrhagic disease caused by elephant endotheliotropic herpesvirus (EEHV) in Asian elephants (Elephas maximus)[J]. Sci Rep, 2021, 11 (1): 12998.
doi: 10.1038/s41598-021-92393-8
|
14 |
GUNTAWANG T , SITTISAK T , SRIVORAKUL S , et al. Development of an immunochromatographic strip test for antigen detection of elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus)[J]. J Virol Methods, 2023, 311, 114627.
doi: 10.1016/j.jviromet.2022.114627
|
15 |
KOCHAKUL V , BOONSRI K , TIWANANTHAGORN S , et al. Development of in situ hybridization for detection of elephant endotheliotropic herpesvirus in Asian elephants[J]. J Vet Diagn Invest, 2018, 30 (4): 628- 632.
doi: 10.1177/1040638718773810
|
16 |
DAVISON A J , EBERLE R , EHLERS B , et al. The order Herpesvirales[J]. Arch Virol, 2009, 154 (1): 171- 177.
doi: 10.1007/s00705-008-0278-4
|
17 |
PAVULRAJ S , ESCHKE K , PRAHL A , et al. Fatal elephant endotheliotropic herpesvirus infection of two young Asian elephants[J]. Microorganisms, 2019, 7 (10): 396.
doi: 10.3390/microorganisms7100396
|
18 |
OO Z M , AUNG Y H , AUNG T T , et al. Elephant endotheliotropic herpesvirus hemorrhagic disease in Asian elephant calves in logging camps, Myanmar[J]. Emerg Infect Dis, 2020, 26 (1): 63- 69.
doi: 10.3201/eid2601.190159
|
19 |
HARDMAN K , DASTJERDI A , GURRALA R , et al. Detection of elephant endotheliotropic herpesvirus type 1 in asymptomatic elephants using TaqMan real-time PCR[J]. Vet Rec, 2012, 170 (8): 205.
doi: 10.1136/vr.100270
|
20 |
SITTISAK T , GUNTAWANG T , SRIVORAKUL S , et al. Response of elephant peripheral blood mononuclear cells when stimulated with elephant endotheliotropic herpesvirus glycoprotein B (EEHV-gB)[J]. Vet Immunol Immunopathol, 2023, 258, 110577.
doi: 10.1016/j.vetimm.2023.110577
|
21 |
PERRIN K L , KRISTENSEN A T , BERTELSEN M F , et al. Retrospective review of 27 European cases of fatal elephant endotheliotropic herpesvirus-haemorrhagic disease reveals evidence of disseminated intravascular coagulation[J]. Sci Rep, 2021, 11 (1): 14173.
doi: 10.1038/s41598-021-93478-0
|
22 |
RICHMAN L K , MONTALI R J , CAMBRE R C , et al. Clinical and pathological findings of a newly recognized disease of elephants caused by endotheliotropic herpesviruses[J]. J Wildl Dis, 2000, 36 (1): 1- 12.
doi: 10.7589/0090-3558-36.1.1
|
23 |
RICHMAN L K , MONTALI R J , GARBER R L , et al. Novel endotheliotropic herpesviruses fatal for Asian and African elephants[J]. Science, 1999, 283 (5405): 1171- 1176.
doi: 10.1126/science.283.5405.1171
|
24 |
PAN T T , TAN R M , QU H P , et al. Next-generation sequencing of the BALF in the diagnosis of community-acquired pneumonia in immunocompromised patients[J]. J Infect, 2019, 79 (1): 61- 74.
|
25 |
HAN D S , LI R , SHI J P , et al. Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing[J]. Theranostics, 2020, 10 (12): 5501- 5513.
doi: 10.7150/thno.45554
|
26 |
FERRARI G , LISCHER H E L , NEUKAMM J , et al. Assessing metagenomic signals recovered from Lyuba, a 42, 000-year-old permafrost-preserved woolly mammoth calf[J]. Genes (Basel), 2018, 9 (9): 436.
doi: 10.3390/genes9090436
|
27 |
GVLLERT S , FISCHER M A , TURAEV D , et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies[J]. Biotechnol Biofuels, 2016, 9, 121.
doi: 10.1186/s13068-016-0534-x
|
28 |
ILMBERGER N , GVLLERT S , DANNENBERG J , et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes[J]. PLoS One, 2014, 9 (9): e106707.
doi: 10.1371/journal.pone.0106707
|
29 |
ZHANG C B , XU B , HUANG Z X , et al. Metagenomic analysis of the fecal microbiomes of wild Asian elephants reveals microflora and enzymes that mainly digest hemicellulose[J]. J Microbiol Biotechnol, 2019, 29 (8): 1255- 1265.
doi: 10.4014/jmb.1904.04033
|
30 |
ZHANG L , DONG L , LIN L , et al. Asian elephants in China: estimating population size and evaluating habitat suitability[J]. PLoS One, 2015, 10 (5): e0124834.
doi: 10.1371/journal.pone.0124834
|