[1] |
O'LEARY K. The global burden of antimicrobial resistance [J/OL]. Nat Med, 2022, doi:10. 1038/d41591-022-00033-z. [2023-07-10]. https://www.nature.com/articles/d41591-022-00033-z.
|
[2] |
TACCONELLI E, SIFAKIS F, HARBARTH S, et al. Surveillance for control of antimicrobial resistance[J]. Lancet Infect Dis, 2018, 18(3):e99-e106.
|
[3] |
BURKI T K. Tackling antimicrobial resistance in food-producing animals[J]. Lancet Respir Med, 2018, 6(2):93-94.
|
[4] |
CARFRAE L A, MACNAIR C R, BROWN C M, et al. Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens[J]. Nat Microbiol, 2020, 5(1):93-101.
|
[5] |
BOCKMAN M R, MISHRA N, ALDRICH C C. The biotin biosynthetic pathway in mycobacterium tuberculosis is a validated target for the development of antibacterial agents[J]. Curr Med Chem, 2020, 27(25):4194-4232.
|
[6] |
ASKAR H, CHEN S L, HAO H F, et al. Immune evasion of Mycoplasma bovis[J]. Pathogens, 2021, 10(3):297.
|
[7] |
DUDEK K, NICHOLAS R A J, SZACAWA E, et al. Mycoplasma bovis infections-occurrence, diagnosis and control[J]. Pathogens, 2020, 9(8):640.
|
[8] |
DUDEK K, BEDNAREK D, AYLING R D, et al. Analysis of the immune response of calves to various saponin-based adjuvants for an experimental Mycoplasma bovis vaccine[J]. Acta Vet Hung, 2018, 66(2):226-240.
|
[9] |
BOKMA J, VEREECKE N, NAUWYNCK H, et al. Genome-wide association study reveals genetic markers for antimicrobial resistance in Mycoplasma bovis[J]. Microbiol Spectr, 2021, 9(2):e26221.
|
[10] |
KINNEAR A, MCALLISTER T A, ZAHEER R, et al. Investigation of macrolide resistance genotypes in Mycoplasma bovis isolates from Canadian feedlot cattle[J]. Pathogens, 2020, 9(8):622.
|
[11] |
LYSNYANSKY I, AYLING R D. Mycoplasma bovis:mechanisms of resistance and trends in antimicrobial susceptibility[J]. Front Microbiol, 2016, 7:595.
|
[12] |
SIRITHANAKORN C, CRONAN J E. Biotin, a universal and essential cofactor:synthesis, ligation and regulation[J]. FEMS Microbiol Rev, 2021, 45(4):fuab003.
|
[13] |
LAMBRAKI I A, MAJOWICZ S E, PARMLEY E J, et al. Building social-ecological system resilience to tackle antimicrobial resistance across the one health spectrum:protocol for a mixed methods study[J]. JMIR Res Protoc, 2021, 10(6):e24378.
|
[14] |
WERNLI D, JØRGENSEN P S, PARMLEY E J, et al. Evidence for action:a one health learning platform on interventions to tackle antimicrobial resistance[J]. Lancet Infect Dis, 2020, 20(12):e307-e311.
|
[15] |
BAO Z H, QI X F, HONG S, et al. Structure and mechanism of a group-I cobalt energy coupling factor transporter[J]. Cell Res, 2017, 27(5):675-687.
|
[16] |
WANG T L, FU G B, PAN X J, et al. Structure of a bacterial energy-coupling factor transporter[J]. Nature, 2013, 497(7448):272-276.
|
[17] |
MAJSNEROWSKA M, HÄNELT I, WUNNICKE D, et al. Substrate-induced conformational changes in the S-component ThiT from an energy coupling factor transporter[J]. Structure, 2013, 21(5):861-867.
|
[18] |
THANGARATNARAJAH C, RHEINBERGER J, PAULINO C, et al. Insights into the bilayer-mediated toppling mechanism of a folate-specific ECF transporter by cryo-EM[J]. Proc Natl Acad Sci U S A, 2021, 118(34):e2105014118.
|
[19] |
ZHANG P, WANG J W, SHI Y G. Structure and mechanism of the S component of a bacterial ECF transporter[J]. Nature, 2010, 468(7324):717-720.
|
[20] |
YE H Y, CAI M Z, ZHANG H M, et al. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis[J]. Sci Rep, 2016, 6:26479.
|
[21] |
ZHANG H M, WANG Q J, FISHER D J, et al. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis[J]. Sci Rep, 2016, 6:25680.
|
[22] |
HEBBELN P, RODIONOV D A, ALFANDEGA A, et al. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module[J]. Proc Natl Acad Sci U S A, 2007, 104(8):2909-2914.
|
[23] |
SHI Y, ZANG N, LOU N J, et al. Structure and mechanism for streptococcal fatty acid kinase (Fak) system dedicated to host fatty acid scavenging[J]. Sci Adv, 2022, 8(35):eabq3944.
|
[24] |
XU Y C, YANG J, LI W H, et al. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target[J]. PLoS Pathog, 2022, 18(7):e1010615.
|
[25] |
DEVI K R, LEE L J, YAN L T, et al. Occupational exposure and challenges in tackling M. bovis at human-animal interface:a narrative review[J]. Int Arch Occup Environ Health, 2021, 94(6):1147-1171.
|
[26] |
SALGADU A, FIRESTONE S M, WATT A, et al. Evaluation of the MilA ELISA for the diagnosis of herd infection with Mycoplasma bovis using bulk tank milk and estimation of the prevalence of M. bovis in Australia[J]. Vet Microbiol, 2022, 270:109454.
|
[27] |
XU Q Y, PAN Q, WU Q, et al. Mycoplasma bovis adhesins and their target proteins[J]. Front Immunol, 2022, 13:1016641.
|
[28] |
GELGIE A E, KORSA M G, DEGO O K. Mycoplasma bovis mastitis[J]. Curr Res Microb Sci, 2022, 3:100123.
|
[29] |
PEREZ-CASAL J. Pathogenesis and virulence of Mycoplasma bovis[J]. Vet Clin North Am Food Anim Pract, 2020, 36(2):269-278.
|