[1] |
ZHANG H,WANG Z P,WANG S Z,et al.Progress of genome wide association study in domestic animals[J].J Anim Sci Biotechnol,2012,3(1):26.
|
[2] |
HAYES B,GODDARD M.Genome-wide association and genomic selection in animal breeding[J].Genome, 2010, 53(11):876-883.
|
[3] |
LACHANCE J,TISHKOFF S A.SNP ascertainment bias in population genetic analyses:why it is important,and how to correct it[J].Bioessays,2013,35(9):780-786.
|
[4] |
DRUET T,MACLEOD I M,HAYES B J.Toward genomic prediction from whole-genome sequence data:impact of sequencing design on genotype imputation and accuracy of predictions[J].Heredity,2014,112(1):39-47.
|
[5] |
MEUWISSEN T,GODDARD M.Accurate prediction of genetic values for complex traits by whole-genome resequencing[J]. Genetics,2010,185(2):623-631.
|
[6] |
WEISSENKAMPEN J D,JIANG Y,ECKERT S,et al.Methods for the analysis and interpretation for rare variants associated with complex traits[J].Curr Protoc Hum Genet,2019,101(1):e83.
|
[7] |
LI Y,WILLER C,SANNA S,et al.Genotype imputation[J].Annu Rev Genomics Hum Genet,2009,10(1):387-406.
|
[8] |
MARCHINI J,HOWIE B.Genotype imputation for genome-wide association studies[J].Nat Rev Genet,2010,11(7):499-511.
|
[9] |
何桑,丁向东,张勤.基因型填充方法介绍及比较[J].中国畜牧杂志,2013,49(23):95-100.HE S,DING X D,ZHANG Q.Comparison of different genotype imputation methods[J].Chinese Journal of Animal Science,2013, 49(23):95-100.(in Chinese)
|
[10] |
MAHAJAN A,TALIUN D,THURNER M,et al.Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J].Nat Genet,2018,50(11):1505-1513.
|
[11] |
ORHO-MELANDER M,MELANDER O,GUIDUCCI C,et al.Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations[J]. Diabetes, 2008,57(11):3112-3121.
|
[12] |
HUANG X H,YANG S H,GONG J Y,et al.Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis[J].Nat Commun,2015,6(1):6258.
|
[13] |
IBEAGHA-AWEMU E M,PETERS S O,AKWANJI K A,et al.High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs,and novel candidate genes influencing cow milk traits[J].Sci Rep,2016,6(1):31109.
|
[14] |
ALILOO H,MRODE R,OKEYO A M,et al.The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa[J].J Dairy Sci,2018,101(10):9108-9127.
|
[15] |
GROSSI D A,BRITO L F,JAFARIKIA M,et al.Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs[J].Animal,2018,12(11):2235-2245.
|
[16] |
ZHANG C Y,KEMP R A,STOTHARD P,et al.Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K,650K and whole-genome sequence variants[J].Genet Sel Evol,2018,50(1):14.
|
[17] |
RAOUL J,SWAN A A,ELSEN J M.Using a very low-density SNP panel for genomic selection in a breeding program for sheep[J]. Genet Sel Evol,2017,49(1):76.
|
[18] |
YE S P,YUAN X L,LIN X R,et al.Imputation from SNP chip to sequence:a case study in a Chinese indigenous chicken population[J]. J Anim Sci Biotechnol,2018,9(1):30.
|
[19] |
DENG M T,ZHU F,YANG Y Z,et al.Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks[J].BMC Genomics,2019,20(1):1.
|
[20] |
BROWNING B L,BROWNING S R.A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals[J].Am J Hum Genet,2009,84(2):210-223.
|
[21] |
HEIDARITABAR M,CALUS M P L,VEREIJKEN A,et al.Accuracy of imputation using the most common sires as reference population in layer chickens[J].BMC Genetics,2015,16(1):101.
|
[22] |
ROSHYARA N R,SCHOLZ M.Impact of genetic similarity on imputation accuracy[J].BMC Genetics,2015,16(1):90.
|
[23] |
NHO K,SHEN L,KIM S,et al.The effect of reference panels and software tools on genotype imputation[C]//Proceedings of the AMIA Annual Symposium Proceedings.American Medical Informatics Association,2011:1013-1018.
|
[24] |
KELLEHER J,ETHERIDGE A M,MCVEAN G.Efficient coalescent simulation and genealogical analysis for large sample sizes[J].PLoS Comput Biol,2016,12(5):e1004842.
|
[25] |
GIUFFRA E,KIJAS J M H,AMARGER V,et al.The origin of the domestic pig:independent domestication and subsequent introgression[J].Genetics,2000,154(4):1785-1791.
|
[26] |
KIM K I,LEE J H,LI K,et al.Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism[J].Anim Genet,2002,33(1):19-25.
|
[27] |
FRANTZ L A F,SCHRAIBER J G,MADSEN O,et al.Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes[J].Nat Genet,2015,47(10):1141-1148.
|
[28] |
DAS S,ABECASIS G R,BROWNING B L.Genotype imputation from large reference panels[J].Annu Rev Genomics Hum Genet,2018,19(1):73-96.
|
[29] |
DELANEAU O,ZAGURY J F,MARCHINI J.Improved whole-chromosome phasing for disease and population genetic studies[J]. Nat Methods,2013,10(1):5-6.
|
[30] |
LOH P R,DANECEK P,PALAMARA P F,et al.Reference-based phasing using the Haplotype Reference Consortium panel[J]. Nat Genet, 2016,48(11):1443-1448.
|
[31] |
HOWIE B,MARCHINI J,STEPHENS M.Genotype imputation with thousands of genomes[J].G3 (Bethesda), 2011, 1(6):457-470.
|
[32] |
DRUET T,GEORGES M.A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping[J].Genetics,2010,184(3):789-798.
|
[33] |
BROWNING B L,ZHOU Y,BROWNING S R.A one-penny imputed genome from next-generation reference panels[J].Am J Hum Genet,2018,103(3):338-348.
|
[34] |
DAS S,FORER L,SCHÖNHERR S,et al.Next-generation genotype imputation service and methods[J].Nat Genet, 2016, 48(10):1284-1287.
|
[35] |
ZHANG Z Y,DRUET T.Marker imputation with low-density marker panels in Dutch Holstein cattle[J].J Dairy Sci,2010,93(11):5487-5494.
|
[36] |
KELLEHER J,LOHSE K.Coalescent Simulation with msprime[M]//DUTHEIL J Y.Statistical Population Genomics.New York, NY:Humana,2020:191-230.
|
[37] |
SANCHEZ T,CURY J,CHARPIAT G,et al.Deep learning for population size history inference:design,comparison and combination with approximate Bayesian computation[J/OL].bioRxiv,2020,doi:10.1101/2020.01.20.910539.
|
[38] |
CALUS M P L,BOUWMAN A C,HICKEY J M,et al.Evaluation of measures of correctness of genotype imputation in the context of genomic prediction:a review of livestock applications[J].Animal,2014,8(11):1743-1753.
|
[39] |
POOK T,MAYER M,GEIBEL J,et al.Improving imputation quality in BEAGLE for crop and livestock data[J].G3 (Bethesda), 2020, 10(1):177-188.
|
[40] |
HUANG L,LI Y,SINGLETON A B,et al.Genotype-imputation accuracy across worldwide human populations[J].Am J Hum Genet,2009,84(2):235-250.
|
[41] |
CARVALHEIRO R,BOISON S A,NEVES H H R,et al.Accuracy of genotype imputation in Nelore cattle[J].Genet Sel Evol, 2014,46(1):69.
|
[42] |
OLIVEIRA JÚNIOR G A,CHUD T C S,VENTURA R V,et al.Genotype imputation in a tropical crossbred dairy cattle population[J]. J Dairy Sci,2017,100(12):9623-9634.
|
[43] |
HUANG L,WANG C L,ROSENBERG N A.The relationship between imputation error and statistical power in genetic association studies in diverse populations[J].Am J Hum Genet,2009,85(5):692-698.
|
[44] |
HOZÉ C,FOUILLOUX M N,VENOT E,et al.High-density marker imputation accuracy in sixteen French cattle breeds[J].Genet Sel Evol,2013,45(1):33.
|