[1] WIENER G, HAN J L, LONG R J. The yak[M]. Bangkok:RAP Publication, 2003.
[2] ZI X D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement[J]. Theriogenology, 2003, 59(5-6):1303-1312.
[3] GRANLEESE T, CLARK S A, SWAN A A, et al. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values[J]. Genet Sel Evol, 2015, 47:70.
[4] MONZO C, HAOUZI D, ROMAN K, et al. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase Ⅱ oocytes[J]. Hum Reprod, 2012, 27(7):2160-2168.
[5] MOUSSA M, SHU J, ZHANG X H, et al. Cryopreservation of mammalian oocytes and embryos:Current problems and future perspectives[J]. Sci China Life Sci, 2014, 57(9):903-914.
[6] HASLER J F. Factors affecting frozen and fresh embryo transfer pregnancy rates in cattle[J]. Theriogenology, 2001, 56(9):1401-1415.
[7] SPELL A R, BEAL W E, CORAH L R, et al. Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle[J]. Theriogenology, 2001, 56(2):287-297.
[8] YU S J, JU X H, WANG L B, et al. Successful embryo transfer in Tianzhu white yak using standard protocol[J]. Sci China C Life Sci, 2007, 50(5):655-659.
[9] 孙永刚, 徐惊涛, 才让东智, 等. 体外受精生产犏牛胚胎与移植试验研究[J]. 畜牧兽医学报, 2013, 44(5):719-726.
SUN Y G, XU J T, CAIRANG D Z, et al. The study on cattle×yak in vitro fertilization and embryo transfer[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(5):719-726. (in Chinese)
[10] NIU H R, ZI X D, XIAO X, et al. Developmental competence of frozen-thawed yak (Bos grunniens) oocytes followed by in vitro maturation and fertilization[J]. Cryobiology, 2014, 68(1):152-154.
[11] NIU H R, ZI X D, XIAO X, et al. Cloning of cDNAs for H1F0, TOP1, CLTA and CDK1 and the effects of cryopreservation on the expression of their mRNA transcripts in yak (Bos grunniens) oocytes[J]. Cryobiology, 2014, 69(1):55-60.
[12] CHEN P, PAN Y, CUI Y, et al. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3[J]. Reprod Domest Anim, 2017, 52(5):825-835.
[13] XIAO X, ZI X D, NIU H R, et al. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes[J]. Reprod Biol Endocrinol, 2014, 12:30.
[14] 石仙, 熊显荣, 兰道亮, 等. 糖对牦牛卵母细胞体外成熟及其发育能力的影响[J]. 中国畜牧兽医, 2017, 44(1):155-160.
SHI X, XIONG X R, LAN D L, et al. Effect of sugar on in vitro maturation and developmental competence of yak oocytes[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(1):155-160. (in Chinese)
[15] PICELLI S, BJÖRKLUND A K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11):1096-1098.
[16] WANG N, LI C Y, ZHU H B, et al. Effect of vitrification on the mRNA transcriptome of bovine oocytes[J]. Reprod Domest Anim, 2017, 52(4):531-541.
[17] QIU Q, ZHANG G J, MA T, et al. The yak genome and adaptation to life at high altitude[J]. Nat Genet, 2012, 44(8):946-949.
[18] WANGER G P, KIN K, LYNCH V J. Measurement of mRNA abundance using RNA-seq data:RPKM measure is inconsistent among samples[J]. Theory Biosci, 2012, 131(4):281-285.
[19] WANG L, FENG Z, WANG X, et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1):136-138.
[20] 郑杰, 蒲思颖, 杨远潇, 等. 基于高通量测序的犏牛囊胚玻璃化冷冻损伤机制研究[J]. 畜牧兽医学报, 2017, 48(10):1871-1881.
ZHENG J, PU S Y, YANG Y X, et al. Exploring mechanism for vitrification damage of the cross-bred blastocysts of the yak via high-throughput sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10):1871-1881. (in Chinese)
[21] HOLMGREN A. Antioxidant function of thioredoxin and glutaredoxin systems[J]. Antioxid Redox Signal, 2000, 2(4):811-820.
[22] KLEIN A, OLENDROWITZ C, SCHMUTZLER R, et al. Identification of brain-and bone-specific breast cancer metastasis genes[J]. Cancer Lett, 2009, 276(2):212-220.
[23] JIN Q E, CHEN H Y, LUO A P, et al. S100A14 Stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE)[J]. PLoS One, 2011, 6(4):e19375.
[24] KABBAGE M, TRIMECHE M, BEN NASR H, et al. Tropomyosin-4 correlates with higher SBR grades and tubular differentiation in infiltrating ductal breast carcinomas:An immunohistochemical and proteomics-based study[J]. Tumour Biol, 2013, 34(6):3593-3602.
[25] WANG J, GUAN J, LU Z, et al. Clinical and tumor significance of tropomyosin-1 expression levels in renal cell carcinoma[J]. Oncol Rep, 2015, 33(3):1326-1334.
[26] KIM S J, LEE H W, GU KANG H, et al. Ablation of galectin-3 induces p27KIP1-dependent premature senescence without oncogenic stress[J]. Cell Death Differ, 2014, 21(11):1769-1779.
[27] JOUVE N, DESPOIX N, ESPELI M, et al. The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells[J]. J Biol Chem, 2013, 288(4):2571-2579.
[28] GUO Y X, XU X M, LIU Z J, et al. Apoptosis signal-regulating kinase 1 is associated with the effect of claudin-6 in breast cancer[J]. Diagn Pathol, 2012, 7:111.
[29] MORIN V, SANCHEZ-RUBIO A, AZE A, et al. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development[J]. PLoS One, 2012, 7(11):e46850.
[30] JOUHILAHTI E M, MADISSOON E, VESTERLUND L, et al. The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation[J]. Development, 2016, 143(19):3459-3469.
[31] TAMAI K, NAKAMURA M, MIZUMA M, et al. Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma[J]. Cancer Sci, 2014, 105(6):667-674.
[32] SATO Y, INOUE M, YOSHIZAWA T, et al. Moderate hypoxia induces β-cell dysfunction with HIF-1-independent gene expression changes[J]. PLoS One, 2014, 9(12):e114868.
[33] KOVACEVIC I, HU J, SIEHOFF-ICKING A, et al. The F-BAR protein NOSTRIN participates in FGF signal transduction and vascular development[J]. EMBO J, 2012, 31(15):3309-3322.
[34] SPINDEL O N, WORLD C, BERK B C. Thioredoxin interacting protein:Redox dependent and independent regulatory mechanisms[J]. Antioxid Redox Signal, 2012, 16(6):587-596.
[35] HAN S H, CHUNG J H, KIM J, et al. New role of human ribosomal protein S3:Regulation of cell cycle via phosphorylation by cyclin-dependent kinase 2[J]. Oncol Lett, 2017, 13(5):3681-3687.
[36] KOTANI S, TUGENDREICH S, FUJⅡ M, et al. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression[J]. Mol Cell, 1998, 1(3):371-380.
[37] BOLCUN-FILAS E, COSTA Y, SPEED R, et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination[J]. J Cell Biol, 2007, 176(6):741-747.
[38] 王国骄, 王嘉宇, 马殿荣, 等. 不同耐冷性杂草稻和栽培稻抗氧化系统对冷水胁迫的响应[J]. 中国农业科学, 2015, 48(8):1660-1668.
WANG G J, WANG J Y, MA D R, et al. Responses of antioxidant system to cold water stress in weedy and cultivated rice with different chilling sensitivity[J]. Scientia Agricultura Sinica, 2015, 48(8):1660-1668. (in Chinese)
[39] ŠTěTINA T, KOŠTǎL V, KORBELOVÁ J. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster)[J]. PLoS One, 2015, 10(6):e0128976. |