[1] DEY S R, DEB G K, HA A N, et al. Coculturing denuded oocytes during the in vitro maturation of bovine cumulus oocyte complexes exerts a synergistic effect on embryo development[J]. Theriogenology, 2012, 77(6): 1064-1077.
[2] NISHI Y, TAKESHITA T, SATO K, et al. Change of the mitochondrial distribution in mouse ooplasm during in vitro maturation[J]. J Nippon Med Sch, 2003, 70(5): 408-415.
[3] ZHANG L, JIANG S E, WOZNIAK P J, et al. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro[J]. Mol Reprod Dev, 1995, 40(3): 338-344.
[4] KIM Y J, KU S Y, KIM Y Y, et al. microRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles[J]. Hum Reprod, 2013, 28(11): 3050-3061.
[5] HUANG X, LIU C, HAO C F, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8[J]. Reproduction, 2016, 151(6): 643-655.
[6] LI C J, CHEN C, CHEN L, et al. BDNF-induced expansion of cumulus-oocyte complexes in pigs was mediated by microRNA-205[J]. Theriogenology, 2016, 85(8): 1476-1482.
[7] PAN B, TOMS D, SHEN W, et al. microRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells[J]. Am J Physiol Endocrinol Metab, 2015, 308(6): E525-E534.
[8] YAO G D, LIANG M, LI J H, et al. microRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3[J]. Mol Cell Endocrinol, 2014, 382(1): 244-253.
[9] ZHOU L, CHEN J H, LI Z Z, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27. 3 associate with clear cell renal cell carcinoma[J]. PLoS One, 2010, 5(12): e15224.
[10] WEN M, SHEN Y, SHI S H, et al. miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinform, 2011, 13(1): 140.
[11] FRIEDLÄNDER M R, MACKOWIAK S D, LI N, et al. miR Deep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Res, 2012, 40(1): 37-52.
[12] WANG Q, CHI M M, SCHEDL T, et al. An intercellular pathway for glucose transport into mouse oocytes[J]. Am J Physiol Endocrinol Metab, 2012, 302(12): E1511-E1518.
[13] TATEMOTO H, SAKURAI N, MUTO N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells[J]. Biol Reprod, 2000, 63(3): 805-810.
[14] ZHANG M J, XIA G L. Hormonal control of mammalian oocyte meiosis at diplotene stage[J]. Cell Mol Life Sci, 2012, 69(8): 1279-1288.
[15] GILCHRIST G C, TSCHERNER A, NALPATHAMKALAM T, et al. microRNA expression during bovine oocyte maturation and fertilization[J]. Int J Mol Sci, 2016, 17(3): 396.
[16] SOHEL M M, HOELKER M, NOFERESTI S S, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence[J]. PLoS One, 2013, 8(11): e78505.
[17] DA SILVEIRA J C, VEERAMACHANENI D N R, WINGER Q A, et al. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle[J]. Biol Reprod, 2001, 86(3): 71.
[18] SANG Q, YAO Z Y, WANG H, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo[J]. J Clin Endocrinol Metab, 2013, 98(7): 3068-3079.
[19] DIEZ-FRAILE A, LAMMENS T, TILLEMAN K, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization[J]. Hum Fertil, 2014, 17(2): 90-98.
[20] COCUCCI E, MELDOLESI J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles[J]. Trends Cell Biol, 2015, 25(6): 364-372.
[21] DONADEU F X, MOHAMMED BT, IOANNIDIS J. A miRNA target network putatively involved in follicular atresia[J]. Domest Anim Endocrinol, 2017, 58: 76-83.
[22] SAYASITH K, SIROIS J, LUSSIER J G. Expression and regulation of regulator of G-protein signaling protein-2 (RGS2) in equine and bovine follicles prior to ovulation: molecular characterization of RGS2 transactivation in bovine granulosa cells[J]. Biol Reprod, 2014, 91(6): 139.
[23] FEUERSTEIN P, PUARD V, CHEVALIER C, et al. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors[J]. PLoS One, 2012, 7(7): e40449.
[24] BERNHARDT M L, LOWTHER K M, PADILLABANKS E, et al. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs[J]. Development, 2015, 142(15): 2633-2640.
[25] RICO C, DODELET-DEVILLERS A, PAQUET M, et al. HIF1 activity in granulosa cells is required for FSH-regulated Vegfa expression and follicle survival in mice[J]. Biol Reprod, 2014, 90(6): 135.
[26] WU S G, SUN H X, ZHANG Q, et al. microRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1[J]. Reprod Biol Endocrinol, 2015, 13(1): 94.
[27] SIROTKIN A V, KISOVÁ G, BRENAUT P, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH[J]. microRNA, 2014, 3(1): 29-36.
[28] ZHOU J L, LIU J Y, PAN Z X, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor[J]. Mol Cell Endocrinol, 2015, 409: 103-112.
[29] CAO R, WU W J, ZHOU X L, et al. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia[J]. Mol Cells, 2015, 38(4): 304-311. |