

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4546-4558.doi: 10.11843/j.issn.0366-6964.2025.09.033
邱话龙传1,2(
), 金芊芊1,2, 许潇涵1,2, 周静2, 蔡承志2, 李龙1,2,*(
)
收稿日期:2024-12-04
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
李龙
E-mail:2022608031031@stu.zafu.edu.cn;lilong@zafu.edu.cn
作者简介:邱话龙传(1999-),男,江苏南通人,硕士生,主要从事纳米孔测序在临床方面的应用研究,E-mail: 2022608031031@stu.zafu.edu.cn
QIU Hualongchuan1,2(
), JIN Qianqian1,2, XU Xiaohan1,2, ZHOU Jing2, CAI Chengzhi2, LI Long1,2,*(
)
Received:2024-12-04
Online:2025-09-23
Published:2025-09-30
Contact:
LI Long
E-mail:2022608031031@stu.zafu.edu.cn;lilong@zafu.edu.cn
摘要:
旨在研究一套用于纳米孔靶向测序(nanopore targeting sequencing, NTS)的同时检测10种猪病原的引物组,并以此探索后续在此平台上检测全部猪病原的可能性。用Primer Premier 6软件设计10种病原的引物;用PCR及琼脂糖凝胶电泳方法验证10种引物的特异性;用纳米孔测序技术探索多重PCR体系中的最优引物浓度,通过比对各浓度梯度下的病原检出数量确定最优引物浓度;用纳米孔测序技术验证多重PCR的敏感性,用最优引物浓度对不同浓度梯度的病原模板进行扩增,确定检测敏感性;最后用临床样本(n=201)用荧光定量PCR对NTS进行符合性测试。结果显示:10种猪病病原引物特异,对其他10种猪病原均未扩出条带;反应体系中的引物终浓度在3和5 μmol·L-1时,能检测到模板中的10种病原;在加入5 μL浓度为9×102 copies·mL-1的核酸模板时,可检出4组重复中的所有阳性样本;在临床样本的检测上,NTS检测出的病原阳性数量更多。经卡方检验,两者对5种病原的检测结果存在统计学差异(P < 0.05),另5种不存在统计学差异(P>0.05);经卡帕值分析,6种病原检测的一致性极好,4种较好。结果显示,NTS检测方法可以同时检测出10种不同的猪病原,对于两种检测方法结果不符合样本需经第三方检测方法进一步验证。
中图分类号:
邱话龙传, 金芊芊, 许潇涵, 周静, 蔡承志, 李龙. 基于纳米孔测序的十种猪病原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4546-4558.
QIU Hualongchuan, JIN Qianqian, XU Xiaohan, ZHOU Jing, CAI Chengzhi, LI Long. Establishment of Ten Swine Pathogens Detection Method based on Nanopore Sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4546-4558.
表 1
引物序列"
| 病原体名称 Pathogen name | 引物序列(5′→3′) Primer sequence | GenBank号 GenBank Number | 基因名称 Gene name | 引物位置 Primer position | 长度/bp Length |
| APP | F: AAATAATGGGAATAACCAAAATA R: TAAAACGGGTTAAAACTGAAATT | GQ332268.1 | CVCC 263 ApxIVA | 1 818-1 840 2 413-2 435 | 618 |
| MHP | F: CTGATAACATCCGAATTATCCGGG R: TATTCTCCTCGTAAATTTGCTC | KY696715.1 | TZ-1 L-lactate dehydrogenase (ldh) | 236-259 722-743 | 508 |
| PRRSV-2 | F: GTACTGCGGCGCGGAATCGAGC R: CTCTGGCCCACATTTTATCAAGC | PQ306310.1 | SHEU-2022 | 2 582-2 603 3 068-3 090 | 511 |
| PRRSV-1 | F: CCTTGGTCGCTACACCAATGTTGCC R: GCTTGTTTGACCCCGTGTGGACGC | MK057532.1 | KU-N1712 | 4 986-5 010 5 567-5 590 | 604 |
| PCV2 | F: CTCCTAGATCTCAAGGACAGCGGAG R: AGAGAGCTTCTACAGCTGGGAC | MK347388.1 | BX3109 | 376-400 852-873 | 497 |
| PRV | F: CCATCTGGTGAACGTGTCCGAGG R: AGTCGCCCATGTCCGAGACCACG | MT459823.1 | SD-H glycoprotein E (gE) | 252-274 744-766 | 514 |
| Li | F: GGTATACCATAGGCAAATCGC R: ATACGCTACGAGATGAATGG | CP004029.1 | N343 | 1 261 490-1 261 510 1 262 219-1 262 200 | 710 |
| PCV3 | F: CCGCGTGATTTTAAAACTGAAGTTT R: GGGGCTGCCCACCCACCCACCCA | OR758934.1 | PCV3/CH/ Guangxi-21 | 678-702 1 156-1 178 | 500 |
| Er | F: TGCTTGTGTTGTGATTTCTTGACG R: ACAGGACTCGCATGTTTTACAGGT | CP017116.1 | WH13013 | 946 023-946 046 946 506-946 529 | 506 |
| TGEV | F: CAACAAATCTTTTTGAAGGTGATAA R: TCTTAGAAACTGAAAAGTTGTGAA | MZ368889.1 | HB-1 | 8 653-8 677 9 133-9 156 | 503 |
表 2
qPCR方法"
| 病原体名称 Pathogen name | 引物序列(5′→3′) Primer sequence | 方法来源 Method source |
| APP | F: GGGGACGTAACTCGGTGATT R: GCTCACCAACGTTTGCTCAT P: FAM-CGGTGCGGACACCTATATCT-BHQ1 | NY/T 537—2023 |
| MHP | / | 产品货号:BTN15-74120 Product item number: BTN15-74120 猪肺炎支原体荧光定量 PCR试剂盒(探针法) Mycoplasma hyopneumoniae fluorescence quantitative PCR kit (probe method) |
| PRRSV-2 | F: GCACTGATTGACAYTGTGCC R: CGCATGGTTCTCGCCAAT P: FAM-AGTCACCTATTCAATTAGGGCGACCG-TAMRA | GB/T 18090—2023 |
| PRRSV-1 | F: CAGATGCAGAYTGTGTTGCCT R: TGGAGDCCTGCAGCACTTTC P: FAM-ATACATTCTGGCCCCTGCCCAYCACGT-TAMRA | GB/T 18090—2023 |
| PCV2 | F: GGAGTCTGGTGACCGTTGC R: CCAATCACGCTTCTGCATTTT P: FAM-CCGCTCACTTTCAAAAGTTCAGCCA-BHQ1 | GB/T 35901—2018 |
| PRV | F: GCTGTACGTGCTCGTGAT R: TCAGCTCCTTGATGACCGTGA P: HEX-CACAACGGCCACGTCGCCACCTG-BHQ1 | GB/T 35911—2018 |
| Li | F: GAGCACGATTACAAATTGCTTCA R: TGCTATCTCTGCTGCATGTAATGA P: FAM-TCCCTGCACCTCCTTGAATACAATCCACA-TAMRA | SN/T 3488—2013 |
| PCV3 | F: GGGAAAGCCCGAAACACA R: ACTGCCTCCACACTCCACAAT P: HEX-TACGATAAACAACTGGACCCCGACCGA-BHQ1 | DB 31/T 955—2022 |
| Er | F: GTGGCGCATATAATCCCGTA R: GCAAACGCAATGGCTTCT | DB 34/T 3284—2018 |
| TGEV | F: AAGGAAGATGGCGACCAGATAG R: CACTTCTGATGGGCGAGCAT P: HEX-CACGTTCACACACAAAT-MGB | DB33/T 2254—2020 |
表 3
检测结果统计表"
| 病原名称 The name of the pathogen | NTS与qPCR共同检出阳性占比 The positive detection rate of NTS and qPCR combined | 仅通过NTS检出阳性占比 Proportion of positives detected by NTS only | 仅通过qPCR检出阳性占比 Proportion of positives detected by qPCR only | NTS与qPCR共同检出阴性占比 The proportion of negative NTS and qPCR co-detection |
| APP | 24.4(49/201) | 2.5(5/201) | 2.5(5/201) | 70.6(142/201) |
| MHP | 20.4(41/201) | 2.0(4/201) | 1.5(3/201) | 76.1(153/201) |
| PRRSV-2 | 10.0(20/201) | 6.0(12/201) | 1.5(3/201) | 82.6(166/201) |
| PRRSV-1 | 1.0(2/201) | 2.0(4/201) | 0.5(1/201) | 96.5(194/201) |
| PCV2 | 23.9(48/201) | 6.5(13/201) | 1.0(2/201) | 68.7(138/201) |
| PRV | 1.5(3/201) | 0.5(1/201) | 0.0(0/201) | 98.0(197/201) |
| Li | 4.5(9/201) | 8.5(17/201) | 2.0(4/201) | 85.1(174/201) |
| PCV3 | 58.7(118/201) | 9.0(18/201) | 1.0(2/201) | 31.3(63/201) |
| Er | 54.2(109/201) | 4.5(9/201) | 4.0(8/201) | 37.3(75/201) |
| TGEV | 2.5(5/201) | 4.5(9/201) | 0.0(0/201) | 93.0(187/201) |
表 4
符合性数据分析统计表"
| 病原名称 The name of the pathogen | 阳性符合率/% Positive coincidence rate | 阴性符合率/% Negative coincidence rate | 总符合率/% Total coincidence rate | 卡方检验 Chi-square test | 卡帕值 Kappa value |
| APP | 90.74 (49/54) | 96.60 (142/147) | 95.02 (191/201) | P>0.05 | 0.873 4 |
| MHP | 93.18 (41/44) | 97.45 (153/157) | 96.52 (194/201) | P>0.05 | 0.899 0 |
| PRRSV-2 | 86.96 (20/23) | 93.26 (166/178) | 92.54 (186/201) | P<0.05 | 0.685 4 |
| PRRSV-1 | 66.67 (2/3) | 97.98 (194/198) | 97.51 (196/201) | P>0.05 | 0.433 2 |
| PCV2 | 96.00 (48/50) | 91.39 (138/151) | 92.54 (186/201) | P<0.05 | 0.814 0 |
| PRV | 100.00 (3/3) | 99.49 (197/198) | 99.50 (200/201) | P>0.05 | 0.854 7 |
| Li | 69.23 (9/13) | 90.96 (171/188) | 89.55 (180/201) | P<0.05 | 0.410 7 |
| PCV3 | 98.33 (118/120) | 77.78 (63/81) | 90.05 (181/201) | P<0.05 | 0.786 4 |
| Er | 93.16 (109/117) | 89.29 (75/85) | 91.54 (184/201) | P>0.05 | 0.825 9 |
| TGEV | 100.00 (5/5) | 95.41 (187/196) | 95.52 (192/201) | P<0.05 | 0.508 3 |
| 1 | 陈禹均. 规模化猪场保育猪养殖技术与主要疾病防治技术研究[J]. 猪业科学, 2024, 41 (10): 57- 59. |
| CHENG Y J . Research on large-scale pig farm nursery pig breeding technology and main disease prevention and control technology[J]. Swine Science, 2024, 41 (10): 57- 59. | |
| 2 | 杰弗里J齐默曼, 洛克A卡里克, 亚历杭德罗拉米雷斯, 等. 猪病学[M]. 杨汉春, 主译. 11版. 辽宁: 辽宁科学技术出版社, 2021: 425-1040. |
| ZIMMERMAN J J, KARRIKER L A, RAMIREZ A, et al. Diseases of swine[M]. YANG H C, Translate. 11th Ed. Liaoning: Liaoning Science and Technology Press, 2021: 425-1040. (in Chinese) | |
| 3 | 廖丽彬, 陈梦, 莫模双, 等. 防城港猪传染病流行特点及防治措施[J]. 畜禽业, 2024, 35 (02): 59-61, 65. |
| LIAO L B , CHEN M , MOU M S , et al. Epidemic characteristics and prevention measures of pig infectious diseases in Fangchenggang[J]. Livestock and poultry industry, 2024, 35 (02): 59-61, 65. | |
| 4 |
JI C M , FENG X Y , HUANG Y W , et al. The applications of nanopore sequencing technology in animal and human virus research[J]. Viruses, 2024, 16 (5): 798.
doi: 10.3390/v16050798 |
| 5 | 李永刚. 猪多病原混合性感染的临床诊治[J]. 山东畜牧兽医, 2024, 45 (11): 53- 55. |
| LI Y G . Clinical diagnosis and treatment of multi-pathogen mixed infection in pigs[J]. Shandong Animal Husbandry and Veterinary Medicine, 2024, 45 (11): 53- 55. | |
| 6 |
FIERS J , CAY A B , MAES D , et al. A comprehensive review on porcine reproductive and respiratory syndrome virus with emphasis on immunity[J]. Vaccines (Basel), 2024, 12 (8): 942.
doi: 10.3390/vaccines12080942 |
| 7 | WANG M , FU A , HU B , et al. Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J]. MedRxiv, 2020, 16, 2002169. |
| 8 |
YE J , HUANG K , XU Y , et al. Clinical application of nanopore-targeted sequencing technology in bronchoalveolar lavage fluid from patients with pulmonary infections[J]. Microbiol Spectr, 2024, 12 (6): e0002624.
doi: 10.1128/spectrum.00026-24 |
| 9 |
PATRICK R , LINH N T , TAM T T M , et al. A targeted approach with nanopore sequencing for the universal detection and identification of flaviviruses[J]. Sci Rep, 2021, 11, 2045- 2322.
doi: 10.1038/s41598-021-81499-8 |
| 10 |
CHEN P , SUN Z , WANG J , et al. Portable nanopore-sequencing technology: Trends in development and applications[J]. Front Microbiol, 2023, 14, 1043967.
doi: 10.3389/fmicb.2023.1043967 |
| 11 | 孙稳平, 李莉, 贾佩. 规模化母猪场猪丹毒的防控案例分析[J]. 动物医学进展, 2024, 45 (4): 141- 144. |
| SUN W P , LI L , JIA P . Case study of the prevention and control of erysipelas in large-scale sow farms[J]. Advances in Veterinary Medicine, 2024, 45 (4): 141- 144. | |
| 12 | 张雪芹. 猪圆环病毒病的发病趋势及综合防控[J]. 中国动物保健, 2024, 26 (11): 24- 25. |
| ZHANG X Q . Incidence trend and comprehensive prevention and control of porcine circovirus disease[J]. Animal Health in China, 2024, 26 (11): 24- 25. | |
| 13 | 韩淑杰, 邓可辉, 蔡汝健, 等. 1株多谱系重组PRRSV的分离鉴定及全基因组特性和重组模式分析[J]. 黑龙江畜牧兽医, 2024 (21): 69-76, 127. |
| HAN S J , DENG K H , CAI R J , et al. Isolation and identification of one multi-lineage recombinant PRRSV and analysis of genome-wide characteristics and recombination patterns[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2024 (21): 69-76, 127. | |
| 14 | 王建. 猪气喘病的综合防治措施[J]. 中国动物保健, 2024, 26 (11): 32- 33. |
| WANG J . Comprehensive control measures for swine asthma[J]. Animal Health in China, 2024, 26 (11): 32- 33. | |
| 15 | 李季秋. 猪传染性胸膜肺炎的诊断及治疗[J]. 上海畜牧兽医通讯, 2024 (3): 64- 68. |
| LI J Q . Diagnosis and treatment of infectious pleuropneumonia in pigs[J]. Shanghai Animal Husbandry and Veterinary Newsletter, 2024 (3): 64- 68. | |
| 16 | 谢云浩, 王楠, 刘孟兮, 等. 2021—2022年猪伪狂犬病血清学调查[J]. 中国动物保健, 2024, 26 (11): 14-15, 37. |
| XIE Y H , WANG N , LIU M X , et al. 2021-2022 serologic survey of porcine pseudorabies[J]. Animal Health in China, 2024, 26 (11): 14-15, 37. | |
| 17 | 裴艳艳, 张梦琳, 许浒, 等. 猪胞内劳森菌抗体间接ELISA检测方法的建立及应用[J]. 中国预防兽医学报, 2024, 46 (01): 55-60, 69. |
| PEI Y Y , ZHANG M L , XU H , et al. Establishment and application of indirect ELISA method for the detection of Raussenia intracytosis antibody in porcine cells[J]. Chinese Journal of Preventive Veterinary Medicine, 2024, 46 (01): 55-60, 69. | |
| 18 | 申秋平, 黄子惠, 王冉, 等. 猪传染性胃肠炎病毒分子检测方法研究进展[J]. 中国猪业, 2024, 19 (5): 56- 67. |
| SHEN Q P , HUANG Z H , WANG R , et al. Research progress on molecular detection methods for porcine infectious gastroenteritis virus[J]. Chinese Pig Industry, 2024, 19 (5): 56- 67. | |
| 19 | 魏荣, 张慧, 周俊明, 等. NY/T 537—2023. 猪传染性胸膜肺炎诊断技术[S]. 北京: 中华人民共和国农业农村部畜牧兽医局, 2023. |
| WEI R, ZHANG H, ZHOU J M, et al. NY/T 537—2023. Diagnostic techniques for Actinobacllus pleuropneumonia[S]. Beijing: Animal Husbandry and Veterinary Bureau, Ministry of Agriculture and Rural Affairs of the People 's Republic of China, 2023. (in Chinese) | |
| 20 | 胡传伟, 杨汉春, 肇慧君, 等. GB/T 18090—2023. 猪繁殖与呼吸综合征诊断方法[S]. 北京: 中华人民共和国农业农村部, 2023. |
| HU C W, YANG H C, ZHAO H J, et al. GB/T 18090—2023. Diagnostic techniques for porcine reproductive and respiratory syndrome[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People 's Republic of China, 2023. (in Chinese) | |
| 21 | 张强, 李健, 熊炜, 等. GB/T 35901—2018. 猪圆环病毒2型荧光PCR检测方法[S]. 北京: 中华人民共和国农业农村部, 2018. |
| ZHANG Q, LI J, XIONG W, et al. GB/T 35901—2018. Real-time PCR method for detection of porcine circovirus type 2[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People 's Republic of China, 2018. (in Chinese) | |
| 22 | 张强, 童光志, 李健, 等. GB/T 35911—2018. 伪狂犬病病毒荧光PCR检测方法[S]. 北京: 中华人民共和国农业农村部, 2018. |
| ZHANG Q, TONG G Z, LI J, et al. GB/T 35911—2018. Real-time PCR method for detection of pseudorabies virus[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People 's Republic of China, 2018. (in Chinese) | |
| 23 | 陈世界, 杨苗, 田绿波, 等. SN/T 3488—2013. 猪劳森氏胞内菌荧光PCR检疫技术规范[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2013. |
| CHEN S J, YANG M, TIAN L B, et al. SN/T 3488—2013. Quarantine protocol for real-timc PCR of Lawsonia intracellularis[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2013. (in Chinese) | |
| 24 | 刘健, 杨德全, 葛菲菲, 等. DB31/T 955—2022. 猪圆环病毒3型实时荧光PCR检测方法. 上海: 上海市农业农村委员会, 2022. |
| LIU J, YANG D Q, GE F F, et al. DB31/T 955—2022. Real-time PCR method for detection of porcine circovirus type 3[S]. Shanghai: Shanghai Municipal Commission of Agriculture and Rural Affairs, 2022. (in Chinese) | |
| 25 | 李郁, 李雪松, 李春芬, 等. DB34/T 3284—2018. 猪丹毒丝菌实时荧光PCR检测方法. 合肥: 安徽省市场监督管理局, 2018. |
| LI Y, LI X S, LI C F, et al. DB34/T 3284—2018. Method of the real-time PCR for the detection of Erysipelothrix rhusiopathiae[S]. Hefei: Anhui Provincial Administration for Market Regulation, 2018. (in Chinese) | |
| 26 | 宋厚辉, 邵春艳, 王晓杜, 等. DB33/T 2254—2020. 猪流行性腹泻病毒与猪传染性胃肠炎病毒双重荧光定量RT-PCR检测方法. 杭州: 浙江省市场监督管理局, 2020. |
| SONG H H, SHAO C Y, WANG X D, et al. Method of duplex fluorescence quantitative RT-PCR for the detection of porcine epidemic diazhangchenrrhea virus and transmissible gastroenteritis virus[S]. Hangzhou: Zhejiang Provincial Administration for Market Regulation, 2020. (in Chinese) | |
| 27 |
DENG Q M , ZHANG J , ZHANG Y Y , et al. Diagnosis and treatment of refractory infectious diseases using nanopore sequencing technology: Three case reports[J]. World J Clin Cases, 2024, 12 (22): 5208- 5216.
doi: 10.12998/wjcc.v12.i22.5208 |
| 28 |
DABERNIG H J , LOHDE M , HOLZER M , et al. A multicenter study on accuracy and reproducibility of nanopore sequencing-based genotyping of bacterial pathogens[J]. J Clin Microbiol, 2024, 62 (9): e0062824.
doi: 10.1128/jcm.00628-24 |
| 29 |
ZHANG X , YE J , WANG L , et al. Nanopore sequencing technology: A reliable method for pathogen diagnosis in elderly patients with community-acquired pneumonia[J]. Infect Drug Resist, 2024, 17, 3659- 3667.
doi: 10.2147/IDR.S475861 |
| 30 |
FUCHS S A , HULSE L , TAMAYO T , et al. NanoCore: core-genome-based bacterial genomic surveillance and outbreak detection in healthcare facilities from Nanopore and Illumina data[J]. mSystems, 2024, 9 (11): e0108024.
doi: 10.1128/msystems.01080-24 |
| 31 |
O'NEILL K , PLEASANCE E , FAN J , et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes[J]. Cell Genom, 2024, 4 (11): 100674.
doi: 10.1016/j.xgen.2024.100674 |
| 32 | 向婧姝, 周倩, 周藜, 等. 三种多重PCR技术检测食源性致病菌的对比研究[J]. 微量元素与健康研究, 2024, 41 (5): 59- 62. |
| XIANG J S , ZHOU Q , ZHOU L , et al. A comparative study of three multiplex PCR techniques for the detection of foodborne pathogens[J]. Trace Elements and Health Research, 2024, 41 (5): 59- 62. | |
| 33 | DENG Z , LI C , WANG Y , et al. Targeted next-generation sequencing for pulmonary infection diagnosis in patients unsuitable for bronchoalveolar lavage[J]. Front Med (Lausanne), 2023, 10, 1321515. |
| 34 |
WINAND R , BOGATRES B , HOFFMAN S , et al. Targeting the 16S rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies[J]. Int J Mol Sci, 2019, 21 (1): 298.
doi: 10.3390/ijms21010298 |
| 35 |
MARX V . Method of the year: long-read sequencing[J]. Nat Methods, 2023, 20, 6- 11.
doi: 10.1038/s41592-022-01730-w |
| 36 |
LAMB H J , HAYES B J , NGUYEN L T , et al. The future of livestock management: a review of real-time portable sequencing applied to livestock[J]. Genes (Basel), 2020, 11 (12): 1478.
doi: 10.3390/genes11121478 |
| 37 | ZHENG P , ZHOU C , DING Y , et al. Nanopore sequencing technology and its applications[J]. Med Comm (2020), 2023, 4 (4): e316. |
| [1] | 刘添, 吴雨伦, 姚火春, 潘子豪. 副结核分枝杆菌三重TaqMan qPCR检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4750-4758. |
| [2] | 陈冰冰, 蔡蔚游, 刘玉彤, 王修武, 孙守湖, 贺东生. A 群猪轮状病毒微滴式数字PCR检测方法的建立及其应用[J]. 畜牧兽医学报, 2025, 56(8): 4095-4100. |
| [3] | 瑞雪, 张云航, 李杨, 谭晨, 蔡艺菲, 刘园园, 曹宗喜, 张艳, 孙瑞萍, 刘光亮. 猪内源性逆转录病毒检测的三重PCR方法的建立及其在五指山猪组织样品检测中的初步应用[J]. 畜牧兽医学报, 2025, 56(7): 3548-3554. |
| [4] | 赵恩浩, 石红梅, 格桑卓玛, 索朗斯珠, 贡嘎. 甘肃牦牛源肺炎克雷伯菌的遗传进化、毒力基因及耐药性分析[J]. 畜牧兽医学报, 2025, 56(6): 2893-2905. |
| [5] | 王纯, 王晴, 吴晓倩, 胡婷, 崔卫涛, 裴洁, 宋铁平, 胡思顺, 张万坡, 李自力, 周祖涛. 基于荧光定量PCR检测和原位杂交技术分析湖北省蛋鸡滑液支原体的感染情况[J]. 畜牧兽医学报, 2025, 56(3): 1396-1407. |
| [6] | 于江玮, 程慧敏, 林健, 杨宝琳, 黄程, 杨志远, 胡格. 鸭瘟病毒TaqMan荧光定量PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(2): 765-773. |
| [7] | 王星月, 杨志远, 林健, 张紫萱, 周雨婷, 程慧敏, 刘月焕, 胡格. 鸽圆环病毒荧光定量PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(1): 335-342. |
| [8] | 李鹏飞, 高桂琴, 周广青, 吴锦艳, 颜新敏, 曹小安, 何继军, 袁莉刚, 尚佑军. 山羊地方性鼻内肿瘤病毒TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2024, 55(5): 2259-2266. |
| [9] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
| [10] | 江锦秀, 张靖鹏, 林裕胜, 刘维巍, 胡奇林, 万春和. 基于Hsp70基因的绵羊肺炎支原体TaqMan检测方法的建立及其遗传演化分析[J]. 畜牧兽医学报, 2024, 55(4): 1684-1695. |
| [11] | 金睿妍, 张阳, 黄仲舜, 冉维, 丁红雷. 麻旺鸭源大肠杆菌耐药表型分析及β-内酰胺酶、PMQR基因检测[J]. 畜牧兽医学报, 2024, 55(4): 1738-1746. |
| [12] | 马春玲, 任善会, 杨雪, 蔺玉刚, 李积雲, 王相伟, 殷相平, 孙跃峰, 万学瑞, 陈豪泰. 基于牛结节性皮肤病病毒ORF61基因荧光定量检测方法的建立[J]. 畜牧兽医学报, 2024, 55(4): 1800-1809. |
| [13] | 董欣怡, 李锦群, 陈钦玺, 廖明, 曹伟胜. J亚群禽白血病病毒血液核酸筛查技术的建立[J]. 畜牧兽医学报, 2024, 55(3): 1115-1126. |
| [14] | 张靖鹏, 陈翠腾, 林琳, 付环茹, 李兆龙, 江斌, 黄瑜, 万春和. 鸽微RNA病毒实时荧光定量RT-PCR检测方法的建立[J]. 畜牧兽医学报, 2024, 55(2): 860-866. |
| [15] | 朱亚新, 关丽君, 张俊峰, 薛云, 赵战勤. 副猪格拉瑟菌的荚膜分型方法及原理研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5412-5422. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||