畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 4840-4851.doi: 10.11843/j.issn.0366-6964.2024.11.006
卿霆(), 欧阳和昊, 潘其聪, 朱碧波, 叶静, 曹胜波, 王秀羽*(
), 司有辉*(
)
收稿日期:
2023-12-11
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
王秀羽,司有辉
E-mail:beining@webmail.hzau.edu.cn;Jony_WXYu@webmail.hzau.edu.cn;youhui@mail.hzau.edu.cn
作者简介:
卿霆(2000-), 女, 云南大理人, 硕士生, 主要从事畜禽获得性免疫研究, E-mail: beining@webmail.hzau.edu.cn
基金资助:
Ting QING(), Hehao OUYANG, Qicong PAN, Bibo ZHU, Jing YE, Shengbo CAO, Xiuyu WANG*(
), Youhui SI*(
)
Received:
2023-12-11
Online:
2024-11-23
Published:
2024-11-30
Contact:
Xiuyu WANG, Youhui SI
E-mail:beining@webmail.hzau.edu.cn;Jony_WXYu@webmail.hzau.edu.cn;youhui@mail.hzau.edu.cn
摘要:
流式病毒检测法(flow virometry,FVM)是一种利用流式细胞仪检测单个病毒颗粒及其特征的前沿技术。通过FVM,可以精确测量样本中完整病毒颗粒的浓度、表面靶抗原的丰富度以及相对直径等关键参数,进而实现对单个病毒颗粒的高效分析和表征。随着仪器设备、荧光染料和标记策略的不断发展和优化,FVM得到了广泛的应用和研究。该方法不仅被用于实现对单个病毒颗粒的精确分析,还被用于细胞外泌体和微囊泡的检测。本文总结了FVM的发展历程以及病毒等微颗粒的常用标记方法和应用领域,旨在为FVM在病毒学、免疫学、生物医学等研究领域的进一步应用提供参考和借鉴。
中图分类号:
卿霆, 欧阳和昊, 潘其聪, 朱碧波, 叶静, 曹胜波, 王秀羽, 司有辉. 流式病毒检测法的应用进展[J]. 畜牧兽医学报, 2024, 55(11): 4840-4851.
Ting QING, Hehao OUYANG, Qicong PAN, Bibo ZHU, Jing YE, Shengbo CAO, Xiuyu WANG, Youhui SI. Application Progress in Flow Virometry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4840-4851.
1 | 王蕾,罗帝洲,邓紫璇,等.流式细胞术在农业研究领域中的应用[J].广东农业科学,2022,49(11):66-73. |
WANGL,LUOD Z,DENGZ X,et al.Application of flow cytometry in agricultural research[J].Guangdong Agricultural Sciences,2022,49(11):66-73. | |
2 |
RIESEBERGM,KASPERC,REARDONK F,et al.Flow cytometry in biotechnology[J].Appl Microbiol Biotechnol,2001,56(3-4):350-360.
doi: 10.1007/s002530100673 |
3 |
ZAMORAJ L R,AGUILARH C.Flow virometry as a tool to study viruses[J].Methods,2018,134-135,87-97.
doi: 10.1016/j.ymeth.2017.12.011 |
4 |
ARAKELYANA,FITZGERALDW,MARGOLISL,et al.Nanoparticle-based flow virometry for the analysis of individual virions[J].J Clin Invest,2013,123(9):3716-3727.
doi: 10.1172/JCI67042 |
5 | FLYNN J, GORRY P. Flow cytometry analysis to identify human CD8+ T cells[M]//SANEKO S. In Vitro Differentiation of T-Cells. New York: Humana, 2019: 1-13. |
6 |
MANOHARS M,SHAHP,NAIRA.Flow cytometry: principles, applications and recent advances[J].Bioanalysis,2021,13(3):181-198.
doi: 10.4155/bio-2020-0267 |
7 |
KLINGENY,CONZELMANNK K,FINKES.Double-labeled rabies virus: live tracking of enveloped virus transport[J].J Virol,2008,82(1):237-245.
doi: 10.1128/JVI.01342-07 |
8 |
SUGIMOTOK,UEMAM,SAGARAH,et al.Simultaneous tracking of capsid, tegument, and envelope protein localization in living cells infected with triply fluorescent herpes simplex virus 1[J].J Virol,2008,82(11):5198-5211.
doi: 10.1128/JVI.02681-07 |
9 |
GAUDINR,BARTENEVAN S.Sorting of small infectious virus particles by flow virometry reveals distinct infectivity profiles[J].Nat Commun,2015,6(1):6022.
doi: 10.1038/ncomms7022 |
10 |
MARIED,BRUSSAARDC P D,THYRHAUGR,et al.Enumeration of marine viruses in culture and natural samples by flow cytometry[J].Appl Environ Microbiol,1999,65(1):45-52.
doi: 10.1128/AEM.65.1.45-52.1999 |
11 |
CHENF,LUJ R,BINDERB J,et al.Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold[J].Appl Environ Microbiol,2001,67(2):539-545.
doi: 10.1128/AEM.67.2.539-545.2001 |
12 |
LORETS,EL BILALIN,LIPPÉR.Analysis of herpes simplex virus type Ⅰ nuclear particles by flow cytometry[J].Cytometry A,2012,81A(11):950-959.
doi: 10.1002/cyto.a.22107 |
13 |
LUY J,DENGQ,HUD P,et al.A molecular fluorescent dye for specific staining and imaging of RNA in live cells: a novel ligand integration from classical thiazole orange and styryl compounds[J].Chem Commun (Camb),2015,51(83):15241-15244.
doi: 10.1039/C5CC05551B |
14 |
HERCHERM,MUELLERW,SHAPIROH M.Detection and discrimination of individual viruses by flow cytometry[J].J Histochem Cytochem,1979,27(1):350-352.
doi: 10.1177/27.1.374599 |
15 |
YANX M,ZHONGW W,TANGA J,et al.Multiplexed flow cytometric immunoassay for influenza virus detection and differentiation[J].Anal Chem,2005,77(23):7673-7678.
doi: 10.1021/ac0508797 |
16 |
BRUSSAARDC P D,MARIED,BRATBAKG.Flow cytometric detection of viruses[J].J Virol Methods,2000,85(1-2):175-182.
doi: 10.1016/S0166-0934(99)00167-6 |
17 |
MARTÍNEZJ M,SWANB K,WILSONW H.Marine viruses, a genetic reservoir revealed by targeted viromics[J].ISME J,2014,8(5):1079-1088.
doi: 10.1038/ismej.2013.214 |
18 | ARAKELYANA,FITZGERALDW,ZICARIS,et al.Flow virometry to analyze antigenic spectra of virions and extracellular vesicles[J].J Vis Exp,2017,(119):55020. |
19 |
SANJAYAK C,RANZONIA,HUNGJ,et al.Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay[J].Anal Chim Acta,2020,1107,85-91.
doi: 10.1016/j.aca.2020.02.007 |
20 | KHALILJ Y B,LANGLOIST,ANDREANIJ,et al.Flow cytometry sorting to separate viable giant viruses from amoeba co-culture supernatants[J].Front Cell Infect Microbiol,2017,6,202. |
21 | RENNERT M,TANGV A,BURGERD,et al.Intact viral particle counts measured by flow virometry provide insight into the infectivity and genome packaging efficiency of moloney murine leukemia virus[J].J Virol,2020,94(2):e01600-19. |
22 |
SONIN,PAIP,KRISHNA KUMARG R,et al.A flow virometry process proposed for detection of SARS-CoV-2 and large-scale screening of COVID-19 cases[J].Future Virol,2020,15(8):525-532.
doi: 10.2217/fvl-2020-0141 |
23 |
HUSSAINR,ONGAROA E,DE LA CONCEPCIÓNM L R,et al.Small form factor flow virometer for SARS-CoV-2[J].Biomed Opt Express,2022,13(3):1609-1619.
doi: 10.1364/BOE.450212 |
24 |
ABRAHAMS,WOODS.Development of flow cytometry-based Zika virus detection assay[J].Acta Virol,2022,66(3):275-280.
doi: 10.4149/av_2022_307 |
25 | SAMMANN,EL-BOUBBOUK,AL-MUHALHILK,et al.MICaFVi: a novel magnetic immuno-capture flow virometry nano-based diagnostic tool for detection of coronaviruses[J].Biosensors (Basel),2023,13(5):553. |
26 |
LAIJ J,CHAUZ L,CHENS Y,et al.Exosome processing and characterization approaches for research and technology development[J].Adv Sci (Weinh),2022,9(15):2103222.
doi: 10.1002/advs.202103222 |
27 |
PENGY Q,YANGY X,LIY Y,et al.Exosome and virus infection[J].Front Immunol,2023,14,1154217.
doi: 10.3389/fimmu.2023.1154217 |
28 |
NOLTE-'T HOENE N M,VAN DER VLISTE J,AALBERTSM,et al.Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles[J].Nanomedicine: Nanotechnol, Biol Med,2012,8(5):712-720.
doi: 10.1016/j.nano.2011.09.006 |
29 |
VAN DER VLISTE J,NOLTE-'T HOENE N M,STOORVOGELW,et al.Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry[J].Nat Protoc,2012,7(7):1311-1326.
doi: 10.1038/nprot.2012.065 |
30 |
VAN DERPOL E,VAN GEMERTM J C,STURKA,et al.Single vs.swarm detection of microparticles and exosomes by flow cytometry[J].J Thromb Haemost,2012,10(5):919-930.
doi: 10.1111/j.1538-7836.2012.04683.x |
31 |
ARRAUDN,LINARESR,TANS,et al.Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration[J].J Thromb Haemost,2014,12(5):614-627.
doi: 10.1111/jth.12554 |
32 |
GARDINERC,DI VIZIOD,SAHOOS,et al.Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J].J Extracell Vesicles,2016,5(1):32945.
doi: 10.3402/jev.v5.32945 |
33 | SZCZOTKAM,KOCKIJ,IWANE,et al.Determination of telomere length and telomerase activity in cattle infected with bovine leukaemia virus (BLV)[J].Pol J Vet Sci,2019,22(2):391-403. |
34 |
BURNIEJ,TANGV A,WELSHJ A,et al.Flow virometry quantification of host proteins on the surface of HIV-1 pseudovirus particles[J].Viruses,2020,12(11):1296.
doi: 10.3390/v12111296 |
35 |
ZICARIS,ARAKELYANA,FITZGERALDW,et al.Evaluation of the maturation of individual Dengue virions with flow virometry[J].Virology,2016,488,20-27.
doi: 10.1016/j.virol.2015.10.021 |
36 |
ZHANGZ P,WANGD S,YAOY Y,et al.Characterization of T-cell subsets in response to foot-and-mouth disease bivalent inactivated vaccine in Chinese Holstein cows[J].Microbiol Spectr,2023,11(6):e0102923.
doi: 10.1128/spectrum.01029-23 |
37 |
RICCIG,MINSKERK,KAPISHA,et al.Flow virometry for process monitoring of live virus vaccines-lessons learned from ERVEBO[J].Sci Rep,2021,11(1):7432.
doi: 10.1038/s41598-021-86688-z |
38 |
PROUTA,RUSTANDIR R,TUBBSC,et al.Functional profiling of Covid 19 vaccine candidate by flow virometry[J].Vaccine,2022,40(37):5529-5536.
doi: 10.1016/j.vaccine.2022.08.006 |
39 |
SAFFORDH R,JOHNSONM M,BISCHELH N.Flow virometry for water-quality assessment: protocol optimization for a model virus and automation of data analysis[J].npj Clean Water,2023,6(1):28.
doi: 10.1038/s41545-023-00224-2 |
40 | SIEBURTHJ M,JOHNSONP W,HARGRAVESP E.Ultrastructure and ecology of aureococcus ANOPHAGEFERENS gen. ET SP. NOV. (CHRYSOPHYCEAE): the dominant PICOPLANKTER during a bloom in narragansett bay, Rhode Island, summer 1985[J].J Phycol,1988,24(3):416-425. |
41 |
ZHANGP F,LIUS H,GAOD Y,et al.Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: conjugation-ready nanotags for living-virus labeling and imaging[J].J Am Chem Soc,2012,134(20):8388-8391.
doi: 10.1021/ja302367s |
42 |
HAOJ,HUANGL L,ZHANGR,et al.A mild and reliable method to label enveloped virus with quantum dots by copper-free click chemistry[J].Anal Chem,2012,84(19):8364-8370.
doi: 10.1021/ac301918t |
43 |
GEORGIA,MOTTOLA-HARTSHORNC,WARNERA,et al.Detection of individual fluorescently labeled reovirions in living cells[J].Proc Natl Acad Sci U S A,1990,87(17):6579-6583.
doi: 10.1073/pnas.87.17.6579 |
44 |
LEOPOLDP L,FERRISB,GRINBERGI,et al.Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells[J].Hum Gene Ther,1998,9(3):367-378.
doi: 10.1089/hum.1998.9.3-367 |
45 |
LANGK,CHINJ W.Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins[J].Chem Rev,2014,114(9):4764-4806.
doi: 10.1021/cr400355w |
46 |
MAHALL K,YAREMAK J,BERTOZZIC R.Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis[J].Science,1997,276(5315):1125-1128.
doi: 10.1126/science.276.5315.1125 |
47 |
JAOC Y,SALICA.Exploring RNA transcription and turnover in vivo by using click chemistry[J].Proc Natl Acad Sci U S A,2008,105(41):15779-15784.
doi: 10.1073/pnas.0808480105 |
48 |
ZHAOX,CAIL,ADOGLAE A,et al.Labeling of enveloped virus via metabolic incorporation of azido sugars[J].Bioconjug Chem,2015,26(9):1868-1872.
doi: 10.1021/acs.bioconjchem.5b00310 |
49 |
LINKA J,MOCKM L,TIRRELLD A.Non-canonical amino acids in protein engineering[J].Curr Opin Biotechnol,2003,14(6):603-609.
doi: 10.1016/j.copbio.2003.10.011 |
50 |
HUANGB H,LINY,ZHANGZ L,et al.Surface labeling of enveloped viruses assisted by host cells[J].ACS Chem Biol,2012,7(4):683-688.
doi: 10.1021/cb2001878 |
51 |
AGARDN J,PRESCHERJ A,BERTOZZIC R.A strain-promoted[J].J Am Chem Soc,2004,126(46):15046-15047.
doi: 10.1021/ja044996f |
52 |
YEKTAEIANN,MEHRABANID,SEPASKHAHM,et al.Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells[J].Heliyon,2019,5(12):e03073.
doi: 10.1016/j.heliyon.2019.e03073 |
53 |
VAN DER SCHAARH M,RUSTM J,CHENC,et al.Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells[J].PLoS Pathog,2008,4(12):e1000244.
doi: 10.1371/journal.ppat.1000244 |
54 |
HUANGL L,WUL L,LIX,et al.Labeling and single-particle-tracking-based entry mechanism study of vaccinia virus from the Tiantan strain[J].Anal Chem,2018,90(5):3452-3459.
doi: 10.1021/acs.analchem.7b05183 |
55 | DEHGHANIM,GABORSKIT R.Fluorescent labeling of extracellular vesicles[J].Methods Enzymol,2020,645,15-42. |
56 |
KULKEAWK.Progress and challenges in the use of fluorescence-based flow cytometric assays for anti-malarial drug susceptibility tests[J].Malar J,2021,20(1):57.
doi: 10.1186/s12936-021-03591-8 |
57 |
SVECHKAREVD,MOHSA M.Organic fluorescent dye-based nanomaterials: advances in the rational design for imaging and sensing applications[J].Curr Med Chem,2019,26(21):4042-4064.
doi: 10.2174/0929867325666180226111716 |
58 |
LANDOWSKIM,DABUNDOJ,LIUQ,et al.Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools[J].J Virol,2014,88(24):14197-14206.
doi: 10.1128/JVI.01632-14 |
59 | IM K, MARENINOV S, DIAZ M F P, et al. An introduction to performing immunofluorescence staining[M]//YONG W H. Biobanking. New York: Humana Press, 2019: 299-311. |
60 |
SUNS Z,YANJ J,XIAC,et al.Visualizing hepatitis B virus with biarsenical labelling in living cells[J].Liver Int,2014,34(10):1532-1542.
doi: 10.1111/liv.12419 |
61 |
LIUA A,ZHANGZ F,SUNE Z,et al.Simultaneous visualization of parental and progeny viruses by a capsid-specific HaloTag labeling strategy[J].ACS Nano,2016,10(1):1147-1155.
doi: 10.1021/acsnano.5b06438 |
62 |
ZHENGL L,LIC M,ZHENS J,et al.His-tag based in situ labelling of progeny viruses for real-time single virus tracking in living cells[J].Nanoscale,2016,8(44):18635-18639.
doi: 10.1039/C6NR05806J |
63 |
KEX L,ZHANGY,ZHENGF L,et al.SpyCatcher-SpyTag mediated in situ labelling of progeny baculovirus with quantum dots for tracking viral infection in living cells[J].Chem Commun (Camb),2018,54(10):1189-1192.
doi: 10.1039/C7CC08880A |
64 |
JOOK I,LEIY N,LEEC L,et al.Site-specific labeling of enveloped viruses with quantum dots for single virus tracking[J].ACS Nano,2008,2(8):1553-1562.
doi: 10.1021/nn8002136 |
65 |
PANH,LIW J,YAOX J,et al.In situ bioorthogonal metabolic labeling for fluorescence imaging of virus infection in vivo[J].Small,2017,13(17):1604036.
doi: 10.1002/smll.201604036 |
66 |
YAOY S,CHENZ F,ZHANGT,et al.Adverse reproductive and developmental consequences of quantum dots[J].Environ Res,2022,213,113666.
doi: 10.1016/j.envres.2022.113666 |
67 |
WENL,ZHENGZ H,LIUA A,et al.Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component[J].J Nanobiotechnol,2017,15(1):37.
doi: 10.1186/s12951-017-0270-9 |
68 |
LIQ,LIW,YINW,et al.Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages[J].ACS Nano,2017,11(4):3890-3903.
doi: 10.1021/acsnano.7b00275 |
69 |
HUANGL L,JINY J,ZHAOD X,et al.A fast and biocompatible living virus labeling method based on sialic acid-phenylboronic acid recognition system[J].Anal Bioanal Chem,2014,406(11):2687-2693.
doi: 10.1007/s00216-014-7651-9 |
70 | ZHANGL J,WANGS B,XIAL,et al.Lipid-specific labeling of enveloped viruses with quantum dots for single-virus tracking[J].mBio,2020,11(3):e00135-20. |
71 |
KEX L,LIC J,LUOD,et al.Metabolic labeling of enterovirus 71 with quantum dots for the study of virus receptor usage[J].J Nanobiotechnol,2021,19(1):295.
doi: 10.1186/s12951-021-01046-5 |
72 |
HEM M,SATOY,NISHIZAWAS.Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells[J].Analyst,2023,148(3):636-642.
doi: 10.1039/D2AN01804G |
73 |
BAINSJ K,QURESHIN S,CEYLANB,et al.Cell-free transcription-translation system: a dual read-out assay to characterize riboswitch function[J].Nucleic Acids Res,2023,51(15):e82.
doi: 10.1093/nar/gkad574 |
74 |
KUBAM,KHOROSHYYP,LEPŠÍKM,et al.Real-time imaging of nascent DNA in live cells by monitoring the fluorescence lifetime of DNA-incorporated thiazole orange-modified nucleotides[J].Angew Chem,2023,135(38):e202307548.
doi: 10.1002/ange.202307548 |
75 |
GEADAM M,GALINDOI,LORENZOM M,et al.Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein[J].J Gen Virol,2001,82(11):2747-2760.
doi: 10.1099/0022-1317-82-11-2747 |
76 |
ZHOUP,ZHENGZ H,LUW,et al.Multicolor labeling of living-virus particles in live cells[J].Angew Chem Int Ed,2012,51(3):670-674.
doi: 10.1002/anie.201105701 |
77 |
KALIAJ,RAINESR T.Advances in bioconjugation[J].Curr Org Chem,2010,14(2):138-147.
doi: 10.2174/138527210790069839 |
78 |
BANERJEEP S,OSTAPCHUKP,HEARINGP,et al.Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells[J].J Am Chem Soc,2010,132(39):13615-13617.
doi: 10.1021/ja104547x |
79 | RUBINOF A,OUMY H,RAJARAML,et al.Chemoselective modification of viral surfaces via bioorthogonal click chemistry[J].J Vis Exp,2012,(66):e4246. |
80 |
BESTM D.Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules[J].Biochemistry,2009,48(28):6571-6584.
doi: 10.1021/bi9007726 |
81 |
DEVARAJN K,WEISSLEDERR,HILDERBRANDS A.Tetrazine-based cycloadditions: application to pretargeted live cell imaging[J].Bioconjug Chem,2008,19(12):2297-2299.
doi: 10.1021/bc8004446 |
82 |
LEMIEUXG A,DE GRAFFENRIEDC L,BERTOZZIC R.A fluorogenic dye activated by the staudinger ligation[J].J Am Chem Soc,2003,125(16):4708-4709.
doi: 10.1021/ja029013y |
83 |
KÖHNM,BREINBAUERR.The Staudinger ligation—a gift to chemical biology[J].Angew Chem Int Ed,2004,43(24):3106-3116.
doi: 10.1002/anie.200401744 |
84 |
BASKINJ M,PRESCHERJ R,LAUGHLINS T,et al.Copper-free click chemistry for dynamic in vivo imaging[J].Proc Natl Acad Sci U S A,2007,104(43):16793-16797.
doi: 10.1073/pnas.0707090104 |
85 |
HANDULAM,CHENK T,SEIMBILLEY.IEDDA: an attractive bioorthogonal reaction for biomedical applications[J].Molecules,2021,26(15):4640.
doi: 10.3390/molecules26154640 |
86 |
BLACKMANM L,ROYZENM,FOXJ M.Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels- Alder reactivity[J].J Am Chem Soc,2008,130(41):13518-13519.
doi: 10.1021/ja8053805 |
87 |
XIONGD C,ZHUJ J,HANM J,et al.Rapid probing of sialylated glycoproteins in vitro and in vivo via metabolic oligosaccharide engineering of a minimal cyclopropene reporter[J].Org Biomol Chem,2015,13(13):3911-3917.
doi: 10.1039/C5OB00069F |
88 |
HUANGL L,LIUK J,ZHANGQ M,et al.Integrating two efficient and specific bioorthogonal ligation reactions with natural metabolic incorporation in one cell for virus dual labeling[J].Anal Chem,2017,89(21):11620-11627.
doi: 10.1021/acs.analchem.7b03043 |
89 |
BEDNAREKC,WEHLI,JUNGN,et al.The Staudinger ligation[J].Chem Rev,2020,120(10):4301-4354.
doi: 10.1021/acs.chemrev.9b00665 |
90 |
SUNDHOROM,JEONS,PARKJ,et al.Perfluoroaryl azide Staudinger reaction: a fast and bioorthogonal reaction[J].Angew Chem Int Ed,2017,56(40):12117-12121.
doi: 10.1002/anie.201705346 |
91 |
LIL,ZHANGZ Y.Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction[J].Molecules,2016,21(10):1393.
doi: 10.3390/molecules21101393 |
92 |
WANGQ,CHANT R,HILGRAFR,et al.Bioconjugation by copper (Ⅰ)-catalyzed azide-alkyne[J].J Am Chem Soc,2003,125(11):3192-3193.
doi: 10.1021/ja021381e |
93 |
SINGHD K.CuAAC-inspired synthesis of 1, 2, 3-triazole-bridged porphyrin conjugates: an overview[J].Beilstein J Org Chem,2023,19,349-379.
doi: 10.3762/bjoc.19.29 |
94 |
HABERKANTP,RAIJMAKERSR,WILDWATERM,et al.In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids[J].Angew Chem Int Ed,2013,52(14):4033-4038.
doi: 10.1002/anie.201210178 |
95 | 黄利利. 基于生物代谢与生物正交反应的病毒荧光标记新方法[D]. 北京: 北京理工大学, 2017. |
HUANG L L. Virus labeling via biological metabolism and bioorthogonal chemistry[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese) | |
96 | 李俊,郑康成.DNA分子光开关钌配合物[Ru(phen)2(dppz)]2+的研究进展[J].化学试剂,2010,32(6):507-512. |
LIJ,ZHENGK C.Study on the progress of DNA molecular light switch ruthenium complex[Ru(phen)2(dppz)]2+[J].Chemical Reagents,2010,32(6):507-512. | |
97 |
DI PIETROM L,LA GANGAG,NASTASIF,et al.Ru (Ⅱ)-dppz derivatives and their interactions with DNA: thirty years and counting[J].Appl Sci,2021,11(7):3038.
doi: 10.3390/app11073038 |
98 |
MERINOE J,DAVISM L,BARTONJ K.Common mitochondrial DNA mutations generated through DNA-mediated charge transport[J].Biochemistry,2009,48(4):660-666.
doi: 10.1021/bi801570j |
99 |
WANGH,LIUX H,TANL F.Binding properties of a molecular "light switch" ruthenium(Ⅱ) polypyridyl complex toward double- and triple-helical forms of RNA[J].Int J Biol Macromol,2023,242,124710.
doi: 10.1016/j.ijbiomac.2023.124710 |
100 |
WILCHEKM,BAYERE A.The avidin-biotin complex in immunology[J].Immunol Today,1984,5(2):39-43.
doi: 10.1016/0167-5699(84)90027-6 |
101 |
WENL,LINY,ZHANGZ L,et al.Intracellular self-assembly based multi-labeling of key viral components: envelope, capsid and nucleic acids[J].Biomaterials,2016,99,24-33.
doi: 10.1016/j.biomaterials.2016.04.038 |
102 |
SUNE Z,LIUA A,ZHANGZ L,et al.Real-time dissection of distinct dynamin-dependent endocytic routes of influenza a virus by quantum dot-based single-virus tracking[J].ACS Nano,2017,11(5):4395-4406.
doi: 10.1021/acsnano.6b07853 |
103 |
MALTSEVAM,LANGLOISM A.Influence of GlycoGag on the incorporation of host membrane proteins into the envelope of the moloney murine leukemia virus[J].Front Virol,2021,1,747253.
doi: 10.3389/fviro.2021.747253 |
104 |
THÉRYC,WITWERK W,AIKAWAE,et al.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J].J Extracell Vesicles,2018,7(1):1535750.
doi: 10.1080/20013078.2018.1535750 |
105 |
TIANY,GONGM F,HUY Y,et al.Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry[J].J Extracell Vesicles,2020,9(1):1697028.
doi: 10.1080/20013078.2019.1697028 |
106 | LIPPÉR.Flow virometry: a powerful tool to functionally characterize viruses[J].J Virol,2018,92(3):e01765-17. |
107 |
MALTSEVAM,LANGLOISM A.Flow virometry for characterizing the size, concentration, and surface antigens of viruses[J].Curr Protoc,2022,2(2):e368.
doi: 10.1002/cpz1.368 |
[1] | 冯兰, 冯雪, 马玉林, 张令锴, 马燕芬, 魏大为, 李芬, 张路培, 杨润军, 马云, 蔡蓓. PPP5C基因调控牛脂肪细胞增殖、分化的功能研究[J]. 畜牧兽医学报, 2024, 55(10): 4391-4402. |
[2] | 李明慧, 廖吕燕, 刘珍妮, 严萍, 朱正, 吴春琳, 李健, 黄一帆, 吴异健. CFSE标记法分析番鸭呼肠孤病毒感染对番鸭回肠淋巴细胞归巢的影响[J]. 畜牧兽医学报, 2020, 51(1): 159-169. |
[3] | 唐泽群, 罗海燕, 葛铭, 郭荣, 许丹蕾, 张瑞莉. 抗chTLR3单克隆抗体制备及其初步应用[J]. 畜牧兽医学报, 2019, 50(6): 1292-1300. |
[4] | 王咏, 毛箬青, 张克山, 郑海学, 刘湘涛. 塞内卡病毒A结构蛋白VP1诱导PK-15细胞凋亡[J]. 畜牧兽医学报, 2019, 50(4): 811-820. |
[5] | 胡孟娟, 周丽娜, 牛延萍, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫半胱氨酸蛋白酶对山羊PBMCs免疫功能的影响[J]. 畜牧兽医学报, 2018, 49(4): 804-810. |
[6] | 蔡国栋, 孙凯, 项自来, 王玲, 邹辉, 顾建红, 袁燕, 刘学忠, 刘宗平, 卞建春. 玉米赤霉烯酮对小鼠T淋巴细胞体外活化、增殖的影响[J]. 畜牧兽医学报, 2017, 48(7): 1357-1364. |
[7] | 马群山, 刘欣超, 孙晓妮, 王帅, 徐立新, 宋小凯, 严若峰, 李祥瑞. 刚地弓形虫钙依赖蛋白激酶9对小鼠Ana-1巨噬细胞功能的影响[J]. 畜牧兽医学报, 2017, 48(4): 731-739. |
[8] | 李淑芳;张继东;李英;雍艳红;孙凤莉. 米糠多糖对免疫抑制鸡脾脏和法氏囊细胞周期和抗细胞凋亡作用[J]. 畜牧兽医学报, 2009, 40(6): 916-921. |
[9] | 龚涛;陈涛;柏才敏;彭西;崔恒敏. 高氟对雏鸡肝细胞周期和凋亡影响的研究[J]. 畜牧兽医学报, 2009, 40(11): 0-1680. |
[10] | 崔伟;彭西;赵丽;杨帆;崔恒敏. 高铜对雏鸭肾脏细胞周期和凋亡影响的研究[J]. 畜牧兽医学报, 2008, 39(7): 980-984. |
[11] | 崔恒敏;徐之勇;彭西;朱奎成;邓俊良. 高铜对雏鸡淋巴细胞凋亡影响的研究[J]. 畜牧兽医学报, 2007, 38(6): 601-607. |
[12] | 陈进军;王建华. 狗舌草提取物诱导L1210细胞的凋亡 [J]. 畜牧兽医学报, 2006, 37(3): 295-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||