

畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (4): 1356-1369.doi: 10.11843/j.issn.0366-6964.2024.04.002
彭佩雅1, 陈钰焓1, 杨龙1, 王铭1, 赵芮葶1, 何俊1, 印遇龙1,2*, 刘梅1*
收稿日期:2023-10-16
出版日期:2024-04-23
发布日期:2024-04-26
通讯作者:
印遇龙,主要从事生猪生态养殖营养调控与遗传育种研究,E-mail:yinyulong@isa.ac.cn;刘梅,主要从事动物遗传育种与繁殖研究,E-mail:Mei.Liu@hunau.edu.cn
作者简介:彭佩雅(1999-),女,河南驻马店人,硕士,主要从事动物遗传育种与繁殖研究,E-mail:15239589105@163.com
基金资助:PENG Peiya1, CHEN Yuhan1, YANG Long1, WANG Ming1, ZHAO Ruiting1, HE Jun1, YIN Yulong1,2*, LIU Mei1*
Received:2023-10-16
Online:2024-04-23
Published:2024-04-26
摘要: 拷贝数变异(copy number variation,CNV)是基因组上50 bp~5 Mb的DNA片段发生拷贝数目变化的结构变异。近年来,随着检测技术的发展,CNV的检测方法从广泛使用的CGH、SNP和NGS技术延展到新兴的第三代测序技术,使得越来越多对家畜的起源进化和遗传育种等方面有着重要影响的CNV被鉴定。但是,目前从检测技术发展的角度综述有关CNV在牛、羊、猪、马等家畜上的研究进展还较少。因此,本文首先介绍了CNV的主要形成机制、检测方法,然后,分别综述近年来在牛、羊、猪、马等重要家畜物种中利用CGH、SNP、WGS(包括第二代测序和第三代测序)技术检测CNV的研究进展,最后,对家畜CNV在当下研究中存在的问题及其在未来动物遗传育种的应用前景做出展望。本文有望为家畜拷贝数变异相关研究提供新的参考资料。
中图分类号:
彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369.
PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369.
| [1] MACDONALD J R, ZIMAN R, YUEN R K C, et al. The Database of Genomic Variants:a curated collection of structural variation in the human genome[J]. Nucleic Acids Res, 2014, 42(D1):D986-D992. [2] PIROOZNIA M, GOES F S, ZANDI P P. Whole-genome CNV analysis:advances in computational approaches[J]. Front Genet, 2015, 6:138. [3] HOU Y L, LIU G E, BICKHART D M, et al. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle[J]. Funct Integr Genomics, 2012, 12(1):81-92. [4] SHEN W, SZANKASI P, DURTSCHI J, et al. Genome-wide copy number variation detection using NGS:data analysis and interpretation[J]. Methods Mol Biol, 2019, 1908:113-124. [5] PEI S W, WANG L, CAO X T, et al. Research progress on genomic copy number variations in cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(5):871-878. (in Chinese) 裴生伟, 王丽, 曹学涛, 等. 牛全基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2018, 49(5):871-878. [6] PINKEL D, SEGRAVES R, SUDAR D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays[J]. Nat Genet, 1998, 20(2):207-211. [7] REDON R, ISHIKAWA S, FITCH K R, et al. Global variation in copy number in the human genome[J]. Nature, 2006, 444(7118):444-454. [8] CARTER N P. Methods and strategies for analyzing copy number variation using DNA microarrays[J]. Nat Genet, 2007, 39(S7):S16-S21. [9] ZHU M F, NEED A C, HAN Y J, et al. Using ERDS to infer copy-number variants in high-coverage genomes[J]. Am J Hum Genet, 2012, 91(3):408-421. [10] YANG H, ZHU D M. Combinatorial detection algorithm for copy number variations using high-throughput sequencing reads[J]. Int J Patt Recogn Artif Intell, 2019, 33(14):1950022. [11] CHEN Y, ZHAO L, WANG Y, et al. SeqCNV:a novel method for identification of copy number variations in targeted next-generation sequencing data[J]. BMC Bioinformatics, 2017, 18(1):147. [12] TREFFER R, DECKERT V. Recent advances in single-molecule sequencing[J]. Curr Opin Biotechnol, 2010, 21(1):4-11. [13] JAIN M, OLSEN H E, PATEN B, et al. The oxford nanopore MinION:delivery of nanopore sequencing to the genomics community[J]. Genome Biol, 2016, 17(1):239. [14] NORRIS A L, WORKMAN R E, FAN Y F, et al. Nanopore sequencing detects structural variants in cancer[J]. Cancer Biol Ther, 2016, 17(3):246-253. [15] LIAO Y C, LIN S H, LIN H H. Completing bacterial genome assemblies:strategy and performance comparisons[J]. Sci Rep, 2015, 5(1):8747. [16] LIU G E, HOU Y L, ZHU B, et al. Analysis of copy number variations among diverse cattle breeds[J]. Genome Res, 2010, 20(5):693-703. [17] ZHANG L Z, JIA S G, YANG M J, et al. Detection of copy number variations and their effects in Chinese bulls[J]. BMC genomics, 2014, 15(1):480. [18] LIU M, FANG L Z, LIU S L, et al. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins[J]. BMC Genomics, 2019, 20(1):181. [19] BAE J S, CHEONG H S, KIM L H, et al. Identification of copy number variations and common deletion polymorphisms in cattle[J]. BMC Genomics, 2010, 11(1):232. [20] KUMAR H, PANIGRAHI M, SARAVANAN K A, et al. Genome-wide detection of copy number variations in Tharparkar cattle[J]. Anim Biotechnol, 2023, 34(2):448-455. [21] ZHOU Y, CONNOR E E, WIGGANS G R, et al. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle[J]. BMC Genomics, 2018, 19(1):314. [22] AHMAD S F, SINGH A, PANDA S, et al. Genome-wide elucidation of CNV regions and their association with production and reproduction traits in composite Vrindavani cattle[J]. Gene, 2022, 830:146510. [23] GAO Y H, JIANG J P, YANG S H, et al. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing[J]. BMC Genomics, 2017, 18(1):265. [24] XU Y, JIANG Y, SHI T, et al. Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds[J]. PLoS One, 2017, 12(8):e0183921. [25] LIU M, LI B, HUANG Y Z, et al. Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits[J]. Livest Sci, 2016, 194:44-50. [26] LIU M, LI B, SHI T, et al. Copy number variation of bovine SHH gene is associated with body conformation traits in Chinese beef cattle[J]. J Appl Genet, 2019, 60(2):199-207. [27] LIU S L, KANG X L, CATACCHIO C R, et al. Computational detection and experimental validation of segmental duplications and associated copy number variations in water buffalo (Bubalus bubalis)[J]. Funct Integr Genomics, 2019, 19(3):409-419. [28] SINGH V K, SINGH S, NANDHINI P B, et al. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent[J]. Anim Biotechnol, 2023:1-12. [29] FONTANESI L, MARTELLI P L, BERETTI F, et al. An initial comparative map of copy number variations in the goat (Capra hircus) genome[J]. BMC Genomics, 2010, 11(1):639. [30] JENKINS G M, GODDARD M E, BLACK M A, et al. Copy number variants in the sheep genome detected using multiple approaches[J]. BMC Genomics, 2016, 17(1):441. [31] SALEHIAN-DEHKORDI H, XU Y X, XU S S, et al. Genome-wide detection of copy number variations and their association with distinct phenotypes in the world's sheep[J]. Front Genet, 2021, 12:670582. [32] YANG L, XU L Y, ZHOU Y, et al. Diversity of copy number variation in a worldwide population of sheep[J]. Genomics, 2018, 110(3):143-148. [33] KANG X L, LI M X, LIU M, et al. Copy number variation analysis reveals variants associated with milk production traits in dairy goats[J]. Genomics, 2020, 112(6):4934-4937. [34] MORADI M H, MAHMODI R, FARAHANI A H K, et al. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds[J]. Sci Rep, 2022, 12(1):14286. [35] LIU M, ZHOU Y, ROSEN B D, et al. Diversity of copy number variation in the worldwide goat population[J]. Heredity (Edinb), 2019, 122(5):636-646. [36] LIU M, CHENG J, CHEN Y H, et al. Distribution of DGAT1 copy number variation in Chinese goats and its associations with milk production traits[J]. Anim Biotechnol, 2023, 34(4):980-985, doi:10.1080/10495398.2021.2007118. [37] LIU M, WOODWARD-GREENE J, KANG X L, et al. Genome-wide CNV analysis revealed variants associated with growth traits in African indigenous goats[J]. Genomics, 2020, 112(2):1477-1480. [38] NANDOLO W, MÉSZÁROS G, WURZINGER M, et al. Detection of copy number variants in African goats using whole genome sequence data[J]. BMC Genomics, 2021, 22(1):398. [39] ZHANG R Q, WANG J J, ZHANG T, et al. Copy-number variation in goat genome sequence:A comparative analysis of the different litter size trait groups[J]. Gene, 2019, 696:40-46. [40] YUAN C, LU Z K, GUO T T, et al. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing[J]. BMC Genomics, 2021, 22(1):78. [41] DONG Y, ZHANG X L, XIE M, et al. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication[J]. BMC Genomics, 2015, 16(1):431. [42] NORRIS B J, WHAN V A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep[J]. Genome Res, 2008, 18(8):1282-1293. [43] CHEBII V J, MPOLYA E A, OYOLA S O, et al. Genome scan for variable genes involved in environmental adaptations of nubian ibex[J]. J Mol Evol, 2021, 89(7):448-457. [44] HU L Y, ZHANG L Z, LI Q, et al. Genome-wide analysis of CNVs in three populations of Tibetan sheep using whole-genome resequencing[J]. Front Genet, 2022, 13:971464. [45] FADISTA J, NYGAARD M, HOLM L E, et al. A snapshot of CNVs in the pig genome[J]. PLoS One, 2008, 3(12):e3916. [46] WANG J Y, JIANG J C, WANG H F, et al. Improved detection and characterization of copy number variations among diverse pig breeds by array CGH[J]. G3(Bethesda), 2015, 5(6):1253-1261. [47] LIU X Q, JIANG J, HE J, et al. Research progress of wnt wignal transduction regulating ntramuscular fat content in pigs[J]. Animal Science Abroad:Pigs and Poultry, 2012, 32(1):78-80. (in Chinese) 刘晓琴, 蒋隽, 何俊, 等. Wnt信号转导调控猪肌内脂肪含量研究进展[J]. 国外畜牧学:猪与禽, 2012, 32(1):78-80. [48] QIU H Q, XIAO S J, GUO Y M. Detection of genome-wide copy number variation using porcine 1.4 M high-density SNP chips in Bama xiang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9):2079-2088. (in Chinese) 邱恒清, 肖石军, 郭源梅. 利用猪1.4 M高密度SNP芯片检测巴马香猪全基因组拷贝数变异[J]. 畜牧兽医学报, 2020, 51(9):2079-2088. [49] CHEN C Y, QIAO R M, WEI R X, et al. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits[J]. BMC Genomics, 2012, 13(1):733. [50] WANG Y, ZHANG T R, WANG C D. Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip[J]. J Anim Breed Genet, 2020, 137(2):166-176. [51] XU C L, ZHANG W, JIANG Y, et al. Genome-wide detection and analysis of copy number variation in anhui indigenous and western commercial pig breeds using porcine 80K SNP BeadChip[J]. Genes (Basel), 2023, 14(3):654. [52] JIANG J C, WANG J Y, WANG H F, et al. Global copy number analyses by next generation sequencing provide insight into pig genome variation[J]. BMC Genomics, 2014, 15(1):593. [53] ZHENG X R, ZHAO P, JYANG K J, et al. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits[J]. J Anim Sci Biotechnol, 2020, 11:42. [54] RAN X Q, PAN H, HUANG S H, et al. Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102(5):1320-1327. [55] QIU Y B, DING R R, ZHUANG Z W, et al. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs[J]. BMC Genomics, 2021, 22(1):332. [56] DING R R, ZHUANG Z W, QIU Y B, et al. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population[J]. BMC Genomics, 2022, 23(1):590. [57] WEI X, SHU Z, WANG L G, et al. Copy number variations contribute to intramuscular fat content differences by affecting the expression of PELP1 alternative splices in Pigs[J]. Animals(Basel), 2022, 12(11):1382. [58] FAN S H, KONG C C, CHEN Y G, et al. Copy number variation analysis revealed the evolutionary difference between Chinese indigenous pigs and asian wild boars[J]. Genes (Basel), 2023, 14(2):472. [59] ZHANG W, ZHOU M, LIU L Q, et al. Population structure and selection signatures underlying domestication inferred from genome-wide copy number variations in Chinese indigenous pigs[J]. Genes (Basel), 2022, 13(11):2026. [60] LONG Y, SU Y, AI H S, et al. A genome-wide association study of copy number variations with umbilical hernia in swine[J]. Anim Genet, 2016, 47(3):298-305. [61] WANG W. Genome detection of copy number variations among diverse horse breeds by array CGH[D]. Hohhot:Inner Mongolia Agricultural University, 2014. (in Chinese) 王伟. 不同品种马基因组拷贝数变异研究[D]. 呼和浩特:内蒙古农业大学, 2014. [62] WANG M, LIU Y, BI X K, et al. Genome-wide detection of copy number variants in chinese indigenous horse breeds and verification of CNV-overlapped genes related to heat adaptation of the Jinjiang Horse[J]. Genes (Basel), 2022, 13(4):603. [63] DURWARD-AKHURST S A, SCHAEFER R J, GRANTHAM B, et al. Genetic variation and the distribution of variant types in the horse[J]. Front Genet, 2021, 12:758366. [64] AL ABRI M A, HOLL H M, KALLA S E, et al. Whole genome detection of sequence and structural polymorphism in six diverse horses[J]. PLoS One, 2020, 15(4):e0230899. [65] GU J J, LI S, ZHU B, et al. Genetic variation and domestication of horses revealed by 10 chromosome-level genomes and whole-genome resequencing[J]. Mol Ecol Resour, 2023, 23(7):1656-1672. [66] TANG X W, ZHU B, REN R M, et al. Genome-wide copy number variation detection in a large cohort of diverse horse breeds by whole-genome sequencing[J]. Front Vet Sci, 2023, 10:1296213. [67] GAO X, WANG S, WANG Y F, et al. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak[J]. Nat Commun, 2022, 13(1):4887. [68] LUO X E. Whole genome assembly and comparative genomics analysis in swamp buffalo and river buffal[D]. Nanning:Guangxi University, 2020. (in Chinese) 罗西尔. 沼泽型水牛和河流型水牛染色体水平全基因组组装及比较研究[D]. 南宁:广西大学, 2020. [69] GAO Y H, MA L, LIU G E. Initial analysis of structural variation detections in cattle using long-read sequencing methods[J]. Genes (Basel), 2022, 13(5):828. [70] LAMB H J, ROSS E M, NGUYEN L T, et al. Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing[J]. J Anim Sci, 2020, 98(5):skaa127. [71] LOW W Y, TEARLE R, LIU R J, et al. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J]. Nat Commun, 2020, 11(1):2071. [72] LEONARD A S, CRYSNANTO D, FANG Z H, et al. Structural variant-based pangenome construction has low sensitivity to variability of haplotype-resolved bovine assemblies[J]. Nat Commun, 2022, 13(1):3012. [73] ZHOU Y, YANG L, HAN X T, et al. Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history[J]. Genome Res, 2022, 32(8):1585-1601. [74] DU H, DIAO C G, ZHAO P J, et al. Integrated hybrid de novo assembly technologies to obtain high-quality pig genome using short and long reads[J]. Brief Bioinform, 2021, 22(5):bbaa399. [75] FANG X D, MOU Y L, HUANG Z Y, et al. The sequence and analysis of a Chinese pig genome[J]. Gigascience, 2012, 1(1):16. [76] LI M Z, TIAN S L, JIN L, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars[J]. Nat Genet, 2013, 45(12):1431-1438. [77] ZHANG L, HUANG Y M, SI J L, et al. Comprehensive inbred variation discovery in Bama pigs using de novo assemblies[J]. Gene, 2018, 679:81-89. [78] YANG Y L, LIAN J M, XIE B K, et al. Chromosome-scale de novo assembly and phasing of a Chinese indigenous pig genome[Z]. BioRxiv, 2019, doi:10.1101/770958. [79] ZHOU R, LI S T, YAO W Y, et al. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication[J]. Mol Ecol Resour, 2021, 21(6):2077-2092. [80] MA H M, JIANG J, HE J, et al. Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds[J]. Mol Ecol Resour, 2022, 22(4):1508-1520. [81] JIANG Y F, WANG S, WANG C L, et al. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs[J]. Iscience, 2023, 26(3):106119. [82] BICKHART D M, ROSEN B D, KOREN S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J]. Nat Genet, 2017, 49(4):643-650. [83] LI R, YANG P, LI M, et al. A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication[J]. Sci China Life Sci, 2021, 64(7):1116-1130. [84] LI R, GONG M, ZHANG X M, et al. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes[J]. Genome Res, 2023, 33(3):463-477. [85] LI R, GONG M, ZHANG X M, et al. The first sheep graph-based pan-genome reveals the spectrum of structural variations and their effects on tail phenotypes[J]. BioRxiv, 2021, doi:10.1101/2021.12.22.472709. [86] LI R, YANG P, DAI X L, et al. A near complete genome for goat genetic and genomic research[J]. Genet Sel Evol, 2021, 53(1):74. [87] KENT M, MOSER M, BOMAN I A, et al. Insertion of an endogenous Jaagsiekte sheep retrovirus element into the BCO2-gene abolishes its function and leads to yellow discoloration of adipose tissue in Norwegian Spælsau (Ovis aries)[J]. BMC Genomics, 2021, 22(1):492. |
| [1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
| [2] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
| [3] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
| [4] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
| [5] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
| [6] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
| [7] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
| [8] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
| [9] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
| [10] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
| [11] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
| [12] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
| [13] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
| [14] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
| [15] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||