[1] |
邓绪芳, 史子学, 邱亚峰, 等. 流行性乙型脑炎病原生态学的研究概况[J]. 动物医学进展, 2011, 32(2):111-114.DENG X F, SHI Z X, QIU Y F, et al. Progress on ecology of Japanese encephalitis virus[J]. Progress in Veterinary Medicine, 2011, 32(2):111-114. (in Chinese)
|
[2] |
MISRA U K, KALITA J. Overview:Japanese encephalitis[J]. Prog Neurobiol, 2010, 91(2):108-120.
|
[3] |
SOLOMON T. Flavivirus encephalitis[J]. N Engl J Med, 2004, 351(4):370-378.
|
[4] |
杨利娟, 李昱颉, 曹瑾, 等. 氧化应激参与针刺调节抑郁症的机理研究[J]. 世界科学技术-中医药现代化, 2016, 18(8):1334-1341.YANG L J, LI Y J, CAO J, et al. Mechanisms of mitigating depression with acupuncture involving oxidative stress:a research progress[J]. World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, 2016, 18(8):1334-1341. (in Chinese)
|
[5] |
WANG Z Y, ZHEN Z D, FAN D Y, et al. Transcriptomic analysis suggests the M1 polarization and launch of diverse programmed cell death pathways in Japanese encephalitis virus-infected macrophages[J]. Viruses, 2020, 12(3):356.
|
[6] |
KUMAR S, MISRA U K, KALITA J, et al. Imbalance in oxidant/antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus[J]. Neurochem Int, 2009, 55(7):648-654.
|
[7] |
SRIVASTAVA R, KALITA J, KHAN M Y, et al. Free radical generation by neurons in rat model of Japanese encephalitis[J]. Neurochem Res, 2009, 34(12):2141-2146.
|
[8] |
CHAUHAN P S, MISRA U K, KALITA J. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in rat model of Japanese encephalitis[J]. Physiol Behav, 2017, 171:256-267.
|
[9] |
MEUREN L M, PRESTES E B, PAPA M P, et al. Infection of endothelial cells by dengue virus induces ROS production by different sources affecting virus replication, cellular activation, death and vascular permeability[J]. Front Immunol, 2022, 13:810376.
|
[10] |
ALMEIDA L T, FERRAZ A C, DA SILVA CAETANO C C, et al. Zika virus induces oxidative stress and decreases antioxidant enzyme activities in vitro and in vivo[J]. Virus Res, 2020, 286:198084.
|
[11] |
BOBERMIN L D, QUINCOZES-SANTOS A, SANTOS C L, et al. Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats[J]. Sci Rep, 2020, 10(1):21604.
|
[12] |
MCMAHON M, THOMAS N, ITOH K, et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron[J]. J Biol Chem, 2004, 279(30):31556-31567.
|
[13] |
MISHRA M K, GHOSH D, DUSEJA R, et al. Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells:correlation with membrane fluidity and cell death[J]. Neurochem Int, 2009, 54(7):464-470.
|
[14] |
NNA V U, UJAH G A, SULEIMAN J B, et al. Tert-butylhydroquinone preserve testicular steroidogenesis and spermatogenesis in cisplatin-intoxicated rats by targeting oxidative stress, inflammation and apoptosis[J]. Toxicology, 2020, 441:152528.
|
[15] |
ZHOU Q, WANG X, SHAO X F, et al. tert-butylhydroquinone treatment alleviates contrast-induced nephropathy in rats by activating the Nrf2/Sirt3/SOD2 signaling pathway[J]. Oxid Med Cell Longev, 2019, 2019:4657651.
|
[16] |
BAI J, YU X J, LIU K L, et al. Tert-butylhydroquinone attenuates oxidative stress and inflammation in hypothalamic paraventricular nucleus in high salt-induced hypertension[J]. Toxicol Lett, 2017, 281:1-9.
|
[17] |
LI R D, ZHANG P, LI C G, et al. Tert-butylhydroquinone mitigates Carbon Tetrachloride induced Hepatic Injury in mice[J]. Int J Med Sci, 2020, 17(14):2095-2103.
|
[18] |
SHI X J, LI Y, HU J, et al. Tert-butylhydroquinone attenuates the ethanol-induced apoptosis of and activates the Nrf2 antioxidant defense pathway in H9c2 cardiomyocytes[J]. Int J Mol Med, 2016, 38(1):123-130.
|
[19] |
ASHRAF U, DING Z, DENG S Z, et al. Pathogenicity and virulence of Japanese encephalitis virus:neuroinflammation and neuronal cell damage[J]. Virulence, 2021, 12(1):968-980.
|
[20] |
JAKUBCZYK K, DEC K, KALDUNSKA J, et al. Reactive oxygen species-sources, functions, oxidative damage[J]. Pol Merkur Lekarski, 2020, 48(284):124-127.
|
[21] |
WAZA A A, HAMID Z, ALI S, et al. A review on heme oxygenase-1 induction:is it a necessary evil[J]. Inflamm Res, 2018, 67(7):579-588.
|
[22] |
TAKEYA R, SUMIMOTO H. Regulation of novel superoxide-producing NAD(P)H oxidases[J]. Antioxid Redox Signal, 2006, 8(9-10):1523-1532.
|
[23] |
TUNG W H, TSAI H W, LEE I T, et al. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species[J]. Br J Pharmacol, 2010, 161(7):1566-1583.
|
[24] |
KOVAC S, ANGELOVA P R, HOLMSTRÖM K M, et al. Nrf2 regulates ROS production by mitochondria and NADPH oxidase[J]. Biochim Biophys Acta, 2015, 1850(4):794-801.
|
[25] |
BREWER A C, MURRAY T V A, ARNO M, et al. Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo[J]. Free Radic Biol Med, 2011, 51(1):205-215.
|
[26] |
FERRARI M, ZEVINI A, PALERMO E, et al. Dengue virus targets Nrf2 for NS2B3-mediated degradation leading to enhanced oxidative stress and viral replication[J]. J Virol, 2020, 94(24):e01551-20.
|
[27] |
TSENG C K, LIN C K, WU Y H, et al. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication[J]. Sci Rep, 2016, 6:32176.
|
[28] |
CHEN W C, WEI C K, HOSSEN M, et al. (E)-guggulsterone inhibits dengue virus replication by upregulating antiviral interferon responses through the induction of heme oxygenase-1 expression[J]. Viruses, 2021, 13(4):712.
|
[29] |
CHEN W C, TSENG C K, LIN C K, et al. Lucidone suppresses dengue viral replication through the induction of heme oxygenase-1[J]. Virulence, 2018, 9(1):588-603.
|
[30] |
HUANG H X, FALGOUT B, TAKEDA K, et al. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication[J]. Virology, 2017, 503:1-5.
|
[31] |
PEREIRA S H, ALMEIDA L T, FERRAZ A C, et al. Antioxidant and antiviral activity of fullerol against Zika virus[J]. Acta Trop, 2021, 224:106135.
|
[32] |
LU W Z, SHI L J, GAO J, et al. Piperlongumine inhibits Zika virus replication in vitro and promotes up-regulation of HO-1 expression, suggesting an implication of oxidative stress[J]. Virol Sin, 2021, 36(3):510-520.
|
[33] |
ABDEL-WAHAB M H. Potential neuroprotective effect of t-butylhydroquinone against neurotoxicity-induced by 1-methyl-4-(2'-methylphenyl)-1, 2, 3, 6-tetrahydropyridine (2'-methyl-MPTP) in mice[J]. J Biochem Mol Toxicol, 2005, 19(1):32-41.
|
[34] |
ALARCÓN-AGUILAR A, LUNA-LÓPEZ A, VENTURA-GALLEGOS J L, et al. Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP+ toxicity after tBHQ pretreatment[J]. Neurobiol Aging, 2014, 35(8):1901-1912.
|
[35] |
ZHANG J, TUCKER L D, DONGYAN, et al. Tert-butylhydroquinone post-treatment attenuates neonatal hypoxic-ischemic brain damage in rats[J]. Neurochem Int, 2018, 116:1-12.
|
[36] |
刘龙宾, 唐丽霞, 林新祝, 等. Nrf2通路活化在胆红素脑病新生大鼠海马神经元损伤中的作用[J]. 四川大学学报:医学版, 2021, 52(6):960-965.LIU L B, TANG L X, LIN X Z, et al. The role of Nrf2 pathway activation in hippocampal neuron injury of neonatal rats with bilirubin encephalopathy[J]. Journal of Sichuan University:Medical Sciences, 2021, 52(6):960-965. (in Chinese)
|
[37] |
MENG X Y, ZHANG C H, GUO Y, et al. TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways[J]. Oxid Med Cell Longev, 2020, 2020:8787156.
|
[38] |
LIN G D, SUN Y W, LONG J H, et al. Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons[J]. Toxicol Lett, 2020, 319:66-73.
|
[39] |
LU X Y, WANG H D, XU J G, et al. Pretreatment with tert-butylhydroquinone attenuates cerebral oxidative stress in mice after traumatic brain injury[J]. J Surg Res, 2014, 188(1):206-212.
|
[40] |
JIN W, KONG J, WANG H D, et al. Protective effect of tert-butylhydroquinone on cerebral inflammatory response following traumatic brain injury in mice[J]. Injury, 2011, 42(7):714-718.
|
[41] |
KOH K, CHA Y, KIM S, et al. tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation[J]. Biochem Biophys Res Commun, 2009, 380(3):449-453.
|