畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (6): 1668-1677.doi: 10.11843/j.issn.0366-6964.2022.06.002
郭文亮, 徐元庆, 金晓*, 史彬林*
收稿日期:
2021-09-18
出版日期:
2022-06-23
发布日期:
2022-06-25
通讯作者:
金晓,主要从事动物环境与营养研究,E-mail: yaojinxiao@aliyun.com;史彬林,主要从事动物环境与营养研究,E-mail: shibinlin@yeah.net
作者简介:
郭文亮(1999-),男,内蒙古乌兰察布人,硕士生,主要从事动物环境与营养研究,E-mail: 18686197338@163.com
基金资助:
GUO Wenliang, XU Yuanqing, JIN Xiao*, SHI Binlin*
Received:
2021-09-18
Online:
2022-06-23
Published:
2022-06-25
摘要: 冬季持续低温引起的冷应激是降低北方畜牧业经济效益和动物福利的重要因素,可诱导动物产生炎症反应和氧化应激危害机体健康。热休克蛋白作为体内重要的分子伴侣蛋白,在维持机体内环境稳态、帮助动物抵抗应激方面有重要作用,低温环境可激活热休克蛋白快速产生,以此在细胞内外对免疫和抗氧化系统发挥重要调节作用:在胞外,具有保护细胞、参与调节免疫细胞功能、激发免疫反应和提高抗氧化酶活性等作用;在胞内,可抑制NF-κB信号通路保护机体免受炎症损伤,上调Nrf2信号通路提高机体抗氧化功能,缓解冷应激对机体造成的负面影响。本文总结了国内外关于在冷应激状态下热休克蛋白对机体免疫和抗氧化功能的调节作用及其机制,并给出部分提高热休克蛋白表达水平的方法,以期为后续畜禽的冷应激理论研究提供参考。
中图分类号:
郭文亮, 徐元庆, 金晓, 史彬林. 热休克蛋白在冷应激引起的炎症反应和氧化应激中的调节作用[J]. 畜牧兽医学报, 2022, 53(6): 1668-1677.
GUO Wenliang, XU Yuanqing, JIN Xiao, SHI Binlin. Moderating Role of Heat Shock Protein Under Inflammatory Response and Oxidative Stress Caused by Cold Stress[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1668-1677.
[1] | TANG S, XU J, DI L J, et al. The function and application of heat shock protein in animal breeding and veterinary medicine[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 605-615. (in Chinese)唐姝, 徐蛟, 狄良娇, 等. 热休克蛋白的功能及其在畜牧业中的应用[J]. 南京农业大学学报, 2018, 41(4): 605-615. |
[2] | XU M, WU S Y, HUANG C B, et al. Cold or heat stress determination of barn cows on temperature and humidity index in hohhot[J]. Acta Ecologae Animalis Domastici, 2015, 36(2): 54-60. (in Chinese)徐明, 吴淑云, 黄常宝, 等. 呼和浩特地区牛舍内温湿度变化规律和奶牛冷热应激判定[J]. 家畜生态学报, 2015, 36(2): 54-60. |
[3] | KANG H J, LEE J, PARK S J, et al. Effects of cold temperature and fat supplementation on growth performance and rumen and blood parameters in early fattening stage of Korean cattle steers[J]. Anim Feed Sci Technol, 2020, 269: 114624. |
[4] | PLUSH K J, BRIEN F D, HEBART M L, et al. Thermogenesis and physiological maturity in neonatal lambs: a unifying concept in lamb survival[J]. Anim Prod Sci, 2016, 56(4): 736-745. |
[5] | WANG Y, WANG W W, WANG R F, et al. Dietary supplementation of ferulic acid improves performance and alleviates oxidative stress of lambs in a cold environment[J]. Can J Anim Sci, 2019, 99(4): 705-712. |
[6] | WEI H D, ZHANG R X, SU Y Y, et al. Effects of acute cold stress after long-term cold stimulation on antioxidant status, heat shock proteins, inflammation and immune cytokines in broiler heart[J]. Front Physiol, 2018, 9: 1589. |
[7] | JIANG S S, GUO R, ZHANG Y M, et al. Heavy metal scavenger metallothionein mitigates deep hypothermia-induced myocardial contractile anomalies: role of autophagy[J]. Am J Physiol: Endocrinol Metab, 2013, 304(1): E74-E86. |
[8] | WANG X P, YU X, YAN X J, et al. TRPM8 in the negative regulation of TNFα expression during cold stress[J]. Sci Rep, 2017, 7: 45155. |
[9] | SU Y Y, ZHANG X, XIN H W, et al. Effects of prior cold stimulation on inflammatory and immune regulation in ileum of cold-stressed broilers[J]. Poult Sci, 2018, 97(12): 4228-4237. |
[10] | NITURE S K, JAISWAL A K. Hsp90 interaction with INrf2(Keap1) mediates stress-induced Nrf2 activation[J]. J Biol Chem, 2010, 285(47): 36865-36875. |
[11] | HAHN J S. Regulation of Nod1 by Hsp90 chaperone complex[J]. FEBS Lett, 2005, 579(20): 4513-4519. |
[12] | REN J Y, LIU C P, ZHAO D, et al. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress[J]. Environ Sci Pollut Res, 2018, 25(21): 21011-21023. |
[13] | MITCHELL J P, CARMODY R J. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. |
[14] | GUO J R, LI S Z, FANG H G, et al. Different duration of cold stress enhances pro-inflammatory cytokines profile and alterations of Th1 and Th2 type cytokines secretion in serum of wistar rats[J]. J Anim Vet Adv, 2012, 11(10): 1538-1545. |
[15] | ZHUANG D B. A morphological study on the changes of splenic immune function caused by ambient temperature change alone and in combination with LPS/Con A stimulation in rats[D]. Nanchang: Nanchang University, 2012. (in Chinese)庄德葆. 环境温度变化及LPS、ConA共刺激大鼠致脾脏免疫功能变化的形态学研究[D]. 南昌: 南昌大学, 2012. |
[16] | ZANG S C. The role of miR-383 on oxidative damage of rat liver by acute cold exposure[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. (in Chinese)臧树成. miR-383在急性冷暴露诱导大鼠肝脏氧化应激中的作用[D]. 大庆: 黑龙江八一农垦大学, 2019. |
[17] | JIA Z F, CHEN A, WANG C J, et al. Amelioration effects of Kaempferol on immune response following chronic intermittent cold-stress[J]. Res Vet Sci, 2019, 125: 390-396. |
[18] | SUN W W, WANG Z H, CAO J P, et al. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells[J]. Cell Stress Chaperones, 2016, 21(2): 367-372. |
[19] | PAMOK S, AENGWANICH W, KOMUTRIN T. Adaptation to oxidative stress and impact of chronic oxidative stress on immunity in heat-stressed broilers[J]. J Therm Biol, 2009, 34(7): 353-357. |
[20] | CONG P F, LIU Y E, SHI L, et al. Effect of Nrf2 signaling pathway on cold stress induced myocardial injury in mice[J]. Trauma and Critical Care Medicine, 2016, 4(6): 351-354. (in Chinese)丛培芳, 柳云恩, 施琳, 等. Nrf2信号通路对极寒环境致小鼠心肌损伤影响[J]. 创伤与急危重病医学, 2016, 4(6): 351-354. |
[21] | FRIGAULT J J, GAUDET J D, MORIN P JR. Investigating Nrf2-associated non-coding RNAs in the hibernating ground squirrel, Ictidomys tridecemlineatus[J]. J Therm Biol, 2018, 75: 38-44. |
[22] | TREWEEK T M, MEEHAN S, ECROYD H, et al. Small heat-shock proteins: important players in regulating cellular proteostasis[J]. Cell Mol Life Sci, 2015, 72(3): 429-451. |
[23] | ZUEHLKE A D, MOSES M A, NECKERS L. Heat shock protein 90: its inhibition and function[J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1738): 20160527. |
[24] | DANGI S S, DANGI S K, CHOUHAN V S, et al. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus)[J]. Gene, 2016, 575(2): 543-550. |
[25] | SURAI P F, KOCHISH I I, FISININ V I, et al. Antioxidant defence systems and oxidative stress in poultry biology: an update[J]. Antioxidants(Basel), 2019, 8(7): 235. |
[26] | LIU Q L, LIANG C, ZHOU L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system[J]. Protein Sci, 2020, 29(2): 378-390. |
[27] | BRENU E W, STAINES D R, TAJOURI L, et al. Heat shock proteins and regulatory T cells[J]. Autoimmune Dis, 2013, 2013: 813256. |
[28] | SINGH K M, SINGH S, GANGULY I, et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries)[J]. Cell Stress Chaperones, 2017, 22(5): 675-684. |
[29] | NIU D L, ZHAO Y E, GONG X J, et al. Stress response and silencing verification of heat shock proteins in Dermatophagoides farinae under temperature stress[J]. Int J Biol Macromol, 2020, 144: 351-361. |
[30] | MANFREDI L H, ZANON N M, GARÓFALO M A, et al. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats[J]. J Appl Physiol (1985), 2013, 115(10): 1496-1505. |
[31] | CHIANG W C, CHING T T, LEE H C, et al. HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity[J]. Cell, 2012, 148(1-2): 322-334. |
[32] | SURAI P F, KOCHISH I I. Antioxidant systems and vitagenes in poultry biology: heat shock proteins[M]//ASEA A A A, KAUR P. Heat Shock Proteins in Veterinary Medicine and Sciences. Cham: Springer, 2017: 123-177. |
[33] | WANG X R, WANG C, BAN F X, et al. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress[J]. Insect Sci, 2019, 26(1): 44-57. |
[34] | RASTOGI S, HALDAR C. Role of melatonin and HSF-1\\HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennant[J]. J Therm Biol, 2020, 87: 102456. |
[35] | HECK T G, SCOMAZZON S P, NUNES P R, et al. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio[J]. Cell Stress Chaperones, 2017, 22(2): 271-291. |
[36] | LU Y Y, EGUCHI T. HSP stimulation on macrophages and dendritic cells activates innate immune system[M]//ASEA AAA, KAUR P. Heat Shock Proteins in Inflammatory Diseases. Cham: Springer, 2020: 1-15. |
[37] | WU Y Y, XU W C, YIN Y B, et al. NF-κB and PI3K-Akt pathways regulate pneumococcal HSP40-induced immune response of mouse macrophage[J]. Immunological Journal, 2017, 33(1): 18-22. (in Chinese)吴盈盈, 胥文春, 尹一兵, 等. NF-κB和PI3K-Akt通路调节肺炎链球菌HSP40诱导小鼠巨噬细胞免疫应答[J]. 免疫学杂志, 2017, 33(1): 18-22. |
[38] | KUPPNER M C, GASTPAR R, GELWER S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors[J]. Eur J Immunol, 2001, 31(5): 1602-1609. |
[39] | CAO X, YUE L, SONG J Y, et al. Inducible HSP70 antagonizes IL-1β cytocidal effects through inhibiting NF-kB activation via destabilizing TAK1 in HeLa cells[J]. PLoS One, 2012, 7(11): e50059. |
[40] | TUKAJ S. Heat shock protein 70 as a double agent acting inside and outside the cell: insights into autoimmunity[J]. Int J Mol Sci, 2020, 21(15): 5298. |
[41] | SUN H G, TIAN D, TAN Y, et al. Effect of heat shock protein-65 on the anti-oxidant and anti-inflammatory properties of high density lipoprotein[J]. Chinese Journal of Arteriosclerosis, 2013, 21(11): 977-981. (in Chinese)孙海阁, 田迪, 谭迎, 等. 皮下免疫热休克蛋白65对高密度脂蛋白抗炎抗氧化功能的影响[J]. 中国动脉硬化杂志, 2013, 21(11): 977-981. |
[42] | FANG H L, WU Y F, HUANG X H, et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response[J]. J Biol Chem, 2011, 286(35): 30393-30400. |
[43] | HULINA A, RAJKOVIĆM G, DESPOT D J, et al. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells[J]. Cell Stress Chaperones, 2018, 23(3): 373-384. |
[44] | SOMENSI N, BRUM P O, DE MIRANDA RAMOS V, et al. Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells[J]. Cell Physiol Biochem, 2017, 42(6): 2507-2522. |
[45] | SUN S C. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. |
[46] | LEE J H, JEON J, BAI F, et al. The Pseudomonas aeruginosa HSP70-like protein DnaK induces IL-1β expression via TLR4-dependent activation of the NF-κB and JNK signaling pathways[J]. Comp Immunol Microbiol Infect Dis, 2019, 67: 101373. |
[47] | LEE K H, BISWAS A, LIU Y J, et al. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components[J]. J Biol Chem, 2012, 287(47): 39800-39811. |
[48] | CHEN H Q, WU Y F, ZHANG Y Q, et al. Hsp70 inhibits lipopolysaccharide-induced NF-κB activation by interacting with TRAF6 and inhibiting its ubiquitination[J]. FEBS Lett, 2006, 580(13): 3145-3152. |
[49] | WANG H T, DONG Y, CAI Y H. Alanyl-glutamine prophylactically protects against lipopolysaccharide-induced acute lung injury by enhancing the expression of HSP70[J]. Mol Med Rep, 2017, 16(3): 2807-2813. |
[50] | ZHOU X C, DONG L W, YANG B, et al. Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways[J]. Amino Acids, 2015, 47(12): 2635-2645. |
[51] | SHANG L Q, WANG L, SHI X L, et al. HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma[J]. Life Sci, 2020, 241: 117120. |
[52] | HERNÁNDEZ-SANTANA A, PÉREZ-LÓPEZ V, ZUBELDIA J M, et al. A rhodiola rosea root extract protects skeletal muscle cells against chemically induced oxidative stress by modulating heat shock protein 70 (HSP70) expression[J]. Phytother Res, 2014, 28(4): 623-628. |
[53] | KONG F Z, WANG H, GUO J R, et al. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3[J]. In Vitro Cell Dev Biol Anim, 2016, 52(5): 568-575. |
[54] | PRESLEY T, VEDAM K, VELAYUTHAM M, et al. Activation of Hsp90-eNOS and increased NO generation attenuate respiration of hypoxia-treated endothelial cells[J]. Am J Physiol Cell Physiol, 2008, 295(5): C1281-C1291. |
[55] | JIA H D. Effect of heat-shock protein B7 on oxidative stress in adipose tissue of ketotic dairy cows[D]. Changchun: Jilin University, 2019. (in Chinese)贾红豆. 热休克蛋白B7在酮病奶牛脂肪组织氧化应激中的作用研究[D]. 长春: 吉林大学, 2019. |
[56] | LU D X. A major breakthrough in development of animal nutrition in strategic direction: building an animal health and nutrition theory and technology system and its application[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 1-12. (in Chinese)卢德勋. 动物营养学科发展在战略方向上的重大突破: 构建动物健康营养理论和技术体系及其实际应用[J]. 动物营养学报, 2021, 33(1): 1-12. |
[57] | ANDREYEV A Y, KUSHNAREVA Y E, STARKOVA N N, et al. Metabolic ROS signaling: to immunity and beyond[J]. Biochemistry (Moscow), 2020, 85(12-13): 1650-1667. |
[58] | ZHAO G, JIANG K F, WU H C, et al. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling[J]. J Cell Mol Med, 2017, 21(11): 2796-2808. |
[59] | SIVANDZADE F, PRASAD S, BHALERAO A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches[J]. Redox Biol, 2019, 21: 101059. |
[60] | MOLINA M N, FERDER L, MANUCHA W, et al. Emerging role of nitric oxide and heat shock proteins in insulin resistance[J]. Curr Hypertens Rep, 2016, 18(1): 1. |
[61] | XU J, TANG S, SONG E, et al. Hsp70 expression induced by Co-Enzyme Q10 protected chicken myocardial cells from damage and apoptosis under in vitro heat stress[J]. Poult Sci, 2017, 96(5): 1426-1437. |
[62] | XU J, TANG S, YIN B, et al. Co-enzyme Q10 and acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress[J]. Mol Cell Biochem, 2017, 435(1-2): 73-86. |
[1] | 高欣, 孙怡朋. A型流感病毒诱导细胞炎症反应的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 481-490. |
[2] | 陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833. |
[3] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[4] | 宫浩阳, 吴佳鑫, 杨晓钰, 解伟纯, 王雪莹, 李佳璇, 姜艳平, 崔文, 李一经, 唐丽杰. 肠道菌群抗病毒机制研究进展[J]. 畜牧兽医学报, 2023, 54(12): 4910-4919. |
[5] | 徐自强, 刘金松, 孙耀威, 史永浩, 吴艳萍, 张瑞强. 月桂酸对肉鸡屠宰性能、肌肉品质和抗氧化功能的影响[J]. 畜牧兽医学报, 2023, 54(11): 4691-4701. |
[6] | 常伟辰, 李帅奇, 李琰, 闫微, 张红英, 王彦彬, 杨明凡, 张昂克. 白头翁散煎剂发酵物对感染猪流行性腹泻病毒仔猪肠道屏障功能的影响[J]. 畜牧兽医学报, 2023, 54(10): 4403-4410. |
[7] | 谢欣然, 张玥, 陆明敏, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫重组磷脂酰肌醇转移蛋白对山羊外周血单个核细胞模式识别受体和细胞因子转录水平的影响[J]. 畜牧兽医学报, 2023, 54(1): 252-262. |
[8] | 崔恩慧, 薛玉环, 李辞霞, 王帅, 朱晓岩, 柴学军, 赵善廷. 杜仲叶免疫调节机制的网络药理学分析及验证[J]. 畜牧兽医学报, 2023, 54(1): 403-413. |
[9] | 刘倩, 李大鹏, 张宏, 刘琴, 王学智, 李建喜, 杨孝朴, 张景艳. 黄芪多糖降低脂多糖对鸡巨噬细胞促炎细胞因子和TLRs mRNA转录水平影响的效应分析[J]. 畜牧兽医学报, 2022, 53(9): 3251-3261. |
[10] | 张晖, 潘阳阳, 王靖雷, 张瑞, 黄嘉馨, 余四九, 崔燕. 牦牛RBM3的基因克隆及其在不同繁殖时期卵巢、输卵管、子宫中的表达定位[J]. 畜牧兽医学报, 2022, 53(7): 2202-2214. |
[11] | 马骏杰, 汪亮, 刘娣, 张冬杰, 杨秀芹. 冷应激后民猪背脂中差异lncRNA的筛选与分析[J]. 畜牧兽医学报, 2021, 52(4): 932-942. |
[12] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[13] | 张春梅, 贾建磊, 谢雯, 任昊, 张怀霞, 张莹莹, 陈倩. 藏羊HSP27基因过表达和沉默载体构建及对卵泡发育的功能初步分析[J]. 畜牧兽医学报, 2021, 52(12): 3413-3425. |
[14] | 彭孝坤, 张宇, 黄晓瑜, 周广琛, 邢晓南, 张恩平. 急性冷应激对绵羊免疫功能和不同组织热休克蛋白70家族基因表达的影响[J]. 畜牧兽医学报, 2019, 50(8): 1625-1634. |
[15] | 方娟, 陈指龙, 黎陈, 张逢, 伍小松, 杨青. 猪伪狂犬病病毒感染对PK-15细胞增殖和热休克蛋白27、70和90表达的影响[J]. 畜牧兽医学报, 2019, 50(7): 1441-1448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||