[1] |
LERNER T R, BOREL S, GUTIERREZ M G. The innate immune response in human tuberculosis[J]. Cell Microbiol, 2015, 17(9):1277-1285.
|
[2] |
SHAH S, BOHSALI A, AHLBRAND S E, et al. Cutting edge:Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system[J]. J Immunol, 2013, 191(7):3514-3518.
|
[3] |
WELIN A, EKLUND D, STENDAHL O, et al. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1-and cathepsin B-independent necrosis[J]. PLoS One, 2011, 6(5):e20302.
|
[4] |
SEVEAU S, TURNER J, GAVRILIN M A, et al. Checks and balances between autophagy and inflammasomes during infection[J]. J Mol Biol, 2018, 430(2):174-192.
|
[5] |
MASTROCOLA R, ARAGNO M, ALLOATTI G, et al. Metaflammation:tissue-specific alterations of the NLRP3 inflammasome platform in metabolic syndrome[J]. Curr Med Chem, 2018, 25(11):1294-1310.
|
[6] |
SOKOLOVA M, SAHRAOUI A, HØYEM M, et al. NLRP3 inflammasome mediates oxidative stress-induced pancreatic islet dysfunction[J]. Am J Physiol Endocrinol Metab, 2018, 315(5):E912-E923.
|
[7] |
KARKI R, MAN S M, KANNEGANTI T D. Inflammasomes and cancer[J]. Cancer Immunol Res, 2017, 5(2):94-99.
|
[8] |
AHN H, KWON H M, LEE E, et al. Role of inflammasome regulation on immune modulators[J]. J Biomed Res, 2018, 32(6):401-410.
|
[9] |
KUMAR S, DHIMAN M. Inflammasome activation and regulation during Helicobacter pylori pathogenesis[J]. Microb Pathog, 2018, 125:468-474.
|
[10] |
MARIM F M, FRANCO M M C, GOMES M T R, et al. The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection[J]. Semin Immunopathol, 2017, 39(2):215-223.
|
[11] |
CAI X, CHEN J Q, XU H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation[J]. Cell, 2014, 156(6):1207-1222.
|
[12] |
LU A, MAGUPALLI V G, RUAN J B, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes[J]. Cell, 2014, 156(6):1193-1206.
|
[13] |
SBORGI L, RAVOTTI F, DANDEY V P, et al. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy[J]. Proc Natl Acad Sci U S A, 2015, 112(43):13237-13242.
|
[14] |
MALIK A, KANNEGANTI T D. Inflammasome activation and assembly at a glance[J]. J Cell Sci, 2017, 130(23):3955-3963.
|
[15] |
JIN T C, CURRY J, SMITH P, et al. Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1[J]. Proteins, 2013, 81(7):1266-1270.
|
[16] |
VAN OPDENBOSCH N, GURUNG P, WALLE L V, et al. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation[J]. Nat Commun, 2014, 5(1):3209.
|
[17] |
MATUSIAK M, VAN OPDENBOSCH N, LAMKANFI M. CARD-and pyrin-only proteins regulating inflammasome activation and immunity[J]. Immunol Rev, 2015, 265(1):217-230.
|
[18] |
BOSSERMAN R E, CHAMPION P A. ESX systems and the mycobacterial cell envelope:what's the connection[J]. J Bacteriol, 2017, 199(17):e00131-17.
|
[19] |
WONG K W. The role of ESX-1 in Mycobacterium tuberculosis pathogenesis[J]. Microbiol Spectr, 2017, 5(3),
|
[20] |
MITTAL E, SKOWYRA M L, UWASE G, et al. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response[J]. mBio, 2018, 9(6):e01765-18.
|
[21] |
ABDALLAH A M, WEERDENBURG E M, GUAN Q T, et al. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator[J]. PLoS One, 2019, 14(1):e0211003.
|
[22] |
MAJLESSI L, PRADOS-ROSALES R, CASADEVALL A, et al. Release of mycobacterial antigens[J]. Immunol Rev, 2015, 264(1):25-45.
|
[23] |
ABDALLAH A M, BESTEBROER J, SAVAGE N D L, et al. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation[J]. J Immunol, 2011, 187(9):4744-4753.
|
[24] |
ABLASSER A, DORHOI A. Inflammasome activation and function during infection with Mycobacterium tuberculosis[M]//BACKERT S. Inflammasome Signaling and Bacterial Infections. Cham:Springer, 2016, 397:183-197.
|
[25] |
WASSERMANN R, GULEN M F, SALA C, et al. Mycobacterium tuberculosis differentially activates cGAS-and inflammasome-dependent intracellular immune responses through ESX-1[J]. Cell Host Microbe, 2015, 17(6):799-810.
|
[26] |
HALLE A, HORNUNG V, PETZOLD G C, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β[J]. Nat Immunol, 2008, 9(8):857-865.
|
[27] |
LIU X, LIEBERMAN J. A mechanistic understanding of pyroptosis:the fiery death triggered by invasive infection[J]. Adv Immunol, 2017, 135:81-117.
|
[28] |
RATHINAM V A K, FITZGERALD K A. Inflammasome complexes:emerging mechanisms and effector functions[J]. Cell, 2016, 165(4):792-800.
|
[29] |
DOS SANTOS G, KUTUZOV M A, RIDGE K M. The inflammasome in lung diseases[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 303(8):L627-L633.
|
[30] |
高泽乾,朱学亮,张志东,等. 病毒感染激活炎症小体的分子机制[J]. 畜牧兽医学报, 2016, 47(11):2167-2174.GAO Z Q, ZHU X L, ZHANG Z D, et al. The mechanisms of inflammasomes activation by viral components[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11):2167-2174.(in Chinese)
|
[31] |
SHI H X, WABF Y, LI X H, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component[J]. Nat Immunol, 2016, 17(3):250-258.
|
[32] |
WAWROCKI S, DRUSZCZYNSKA M. Inflammasomes in Mycobacterium tuberculosis-driven immunity[J]. Can J Infect Dis Med Microbiol, 2017, 2017:2309478.
|
[33] |
HE Y, ZENG M Y, YANG D H, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature, 2016, 530(7590):354-357.
|
[34] |
HORNUNG V, BAUERNFEIND F, HALLE A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J]. Nat Immunol, 2008, 9(8):847-856.
|
[35] |
SORBARA M T, GIRARDIN S E. Mitochondrial ROS fuel the inflammasome[J]. Cell Res, 2011, 21(4):558-560.
|
[36] |
HEID M E, KEYEL P A, KAMGA C, et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation[J]. J Immunol, 2013, 191(10):5230-5238.
|
[37] |
AMARAL E P, RITEAU N, MOAYERI M, et al. Lysosomal cathepsin release is required for NLRP3-inflammasome activation by Mycobacterium tuberculosis in infected macrophages[J]. Front Immunol, 2018, 9:1427.
|
[38] |
YANG Y, ZHOU X M, KOUADIR M, et al. The AIM2 inflammasome is involved in macrophage activation during infection with virulent Mycobacterium bovis strain[J]. J Infect Dis, 2013, 208(11):1849-1858.
|
[39] |
HUANG S H, SONG Z, HUANG Q T, et al. AIM2 inflammasome is critical for dsDNA-induced IL-1β secretion in human dental pulp cells[J]. Inflammation, 2018, 41(2):409-417.
|
[40] |
MAYER-BARBER K D, ANDRADE B B, OLAND S D, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk[J]. Nature, 2014, 511(7507):99-103.
|
[41] |
MAYER-BARBER K D, ANDRADE B B, BARBER D L, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection[J]. Immunity, 2011, 35(6):1023-1034.
|
[42] |
DORHOI A, IANNACCONE M, FARINACCI M, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment[J]. J Clin Invest, 2013, 123(11):4836-4848.
|
[43] |
MAYER-BARBER K D, BARBER D L, SHENDEROV K, et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo[J]. J Immunol, 2010, 184(7):3326-3330.
|
[44] |
MCELVANIA TEKIPPE E, ALLEN I C, HULSEBERG P D, et al. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1[J]. PLoS One, 2010, 5(8):e12320.
|
[45] |
DORHOI A, NOUAILLES G, JÖRG S, et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis[J]. Eur J Immunol, 2012, 42(2):374-384.
|
[46] |
FERNANDES-ALNEMRI T, YU J W, JULIANA C, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis[J]. Nat Immunol, 2010, 11(5):385-393.
|
[47] |
NETEA M G, VAN DE VEERDONK F L, VAN DER MEER J W M, et al. Inflammasome-independent regulation of IL-1-family cytokines[J]. Annu Rev Immunol, 2015, 33:49.
|
[48] |
DE TORRE-MINGUELA C, MESA DEL CASTILLO P, PELEGRÍN P. The NLRP3 and pyrin inflammasomes:implications in the pathophysiology of autoinflammatory diseases[J]. Front Immunol, 2017, 8:43.
|
[49] |
CHOI A J S, RYTER S W. Inflammasomes:molecular regulation and implications for metabolic and cognitive diseases[J]. Mol Cells, 2014, 37(6):441-448.
|
[50] |
LUKENS J R, DIXIT V D, KANNEGANTI T D. Inflammasome activation in obesity-related inflammatory diseases and autoimmunity[J]. Discov Med, 2011, 12(62):65-74.
|
[51] |
GURUNG P, KANNEGANTI T D. Autoinflammatory skin disorders:the inflammasomme in focus[J]. Trends Mol Med, 2016, 22(7):545-564.
|
[52] |
DEMIDOWICH A P, DAVIS A I, DEDHIA N, et al. Colchicine to decrease NLRP3-activated inflammation and improve obesity-related metabolic dysregulation[J]. Med Hypotheses, 2016, 92:67-73.
|
[53] |
TOBIN D M, ROCA F J, OH S F, et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections[J]. Cell, 2012, 148(3):434-446.
|
[54] |
NETEA M G, SIMON A, VAN DE VEERDONK F, et al. IL-1β processing in host defense:beyond the inflammasomes[J]. PLoS Pathog, 2010, 6(2):e1000661.
|