畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (1): 80-87.doi: 10.11843/j.issn.0366-6964.2023.01.008
陈香凝, 刘萌萌*
收稿日期:
2022-06-16
出版日期:
2023-01-23
发布日期:
2023-01-17
通讯作者:
刘萌萌,主要从事临床兽医学、犬猫心脏病、比较医学的研究,E-mail:994428@hainanu.edu.cn
作者简介:
陈香凝(1997-),女,海南琼海人,硕士生,主要从事临床兽医学、猫心脏病、比较医学的研究,E-mail:xnchen296@163.com
基金资助:
CHEN Xiangning, LIU Mengmeng*
Received:
2022-06-16
Online:
2023-01-23
Published:
2023-01-17
摘要: 肥厚型心肌病是猫最常见的原发性心脏疾病,典型特征为心脏左心室肥厚。心肌纤维化是猫肥厚型心肌病的标志性病理变化,其可导致心脏功能障碍和节律异常,是心肌病患猫预后不良的重要因素。对于猫肥厚型心肌病与心肌纤维化,目前缺乏针对性治疗,新型治疗方法亟需开发。本综述总结了猫肥厚型心肌病的病理特征以及目前关于猫心肌纤维化发病机制的研究进展,拟通过探索心肌纤维化的发病机制,从而为猫肥厚型心肌病新型治疗药物的开发寻找突破点。
中图分类号:
陈香凝, 刘萌萌. 猫肥厚型心肌病与心肌纤维化[J]. 畜牧兽医学报, 2023, 54(1): 80-87.
CHEN Xiangning, LIU Mengmeng. Hypertrophic Cardiomyopathy and Myocardial Fibrosis in Cats[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 80-87.
[1] | MACDONALD K A, KITTLESON M D, LARSON R F, et al. The effect of ramipril on left ventricular mass, myocardial fibrosis, diastolic function, and plasma neurohormones in maine coon cats with familial hypertrophic cardiomyopathy without heart failure[J]. J Vet Intern Med, 2006, 20(5):1093-1105. |
[2] | FREEMAN L M, RUSH J E, STERN J A, et al. Feline hypertrophic cardiomyopathy:a spontaneous large animal model of human HCM[J]. Cardiol Res, 2017, 8(4):139-142. |
[3] | WILKIE L J, SMITH K, FUENTES V L. Cardiac pathology findings in 252 cats presented for necropsy; a comparison of cats with unexpected death versus other deaths[J]. J Vet Cardiol, 2015, 17 Suppl 1:S329-S340. |
[4] | NGUYEN T P, QU Z L, WEISS J N. Cardiac fibrosis and arrhythmogenesis:The road to repair is paved with perils[J]. J Mol Cell Cardiol, 2014, 70:83-91. |
[5] | FOX P R, KEENE B W, LAMB K, et al. International collaborative study to assess cardiovascular risk and evaluate long-term health in cats with preclinical hypertrophic cardiomyopathy and apparently healthy cats:the REVEAL study[J]. J Vet Intern Med, 2018, 32(3):930-943. |
[6] | PAYNE J R, BRODBELT D C, FUENTES V L. Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study)[J]. J Vet Cardiol, 2015, 17 Suppl 1:S244-S257. |
[7] | TREHIOU-SECHI E, TISSIER R, GOUNI V, et al. Comparative echocardiographic and clinical features of hypertrophic cardiomyopathy in 5 breeds of cats:a retrospective analysis of 344 cases (2001-2011)[J]. J Vet Intern Med, 2012, 26(3):532-541. |
[8] | MEURS K M, NORGARD M M, EDERER M M, et al. A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy[J]. Genomics, 2007, 90(2):261-264. |
[9] | BORGEAT K, CASAMIAN-SORROSAL D, Helps C, et al. Association of the myosin binding protein C3 mutation (MYBPC3 R820 W) with cardiac death in a survey of 236 Ragdoll cats[J]. J Vet Cardiol, 2014, 16(2):73-80. |
[10] | GRANSTRÖM S, GODIKSEN M T N, CHRISTIANSEN M, et al. Prevalence of hypertrophic cardiomyopathy in a cohort of British shorthair cats in Denmark[J]. J Vet Intern Med, 2011, 25(4):866-871. |
[11] | CHETBOUL V, PETIT A, GOUNI V, et al. Prospective echocardiographic and tissue Doppler screening of a large Sphynx cat population:Reference ranges, heart disease prevalence and genetic aspects[J]. J Vet Cardiol, 2012, 14(4):497-509. |
[12] | MÄRZ I, WILKIE L J, HARRINGTON N, et al. Familial cardiomyopathy in Norwegian Forest cats[J]. J Feline Med Surg, 2015, 17(8):681-691. |
[13] | MEURS K M, SANCHEZ X, DAVID R M, et al. A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy[J]. Hum Mol Genet, 2005, 14(23):3587-3593. |
[14] | NOVO MATOS J, PEREIRA N, GLAUS T, et al. Transient myocardial thickening in cats associated with heart failure[J]. J Vet Intern Med, 2018, 32(1):48-56. |
[15] | LUIS FUENTES V, ABBOTT J, CHETBOUL V, et al. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats[J]. J Vet Intern Med, 2020, 34(3):1062-1077. |
[16] | ELLIOTT P, MCKENNA W J. Hypertrophic cardiomyopathy[J]. Lancet, 2004, 363(9424):1881-1891. |
[17] | AMBERGER C N, GLARDON O, GLAUS T, et al. Effects of benazepril in the treatment of feline hypertrophic cardiomyopathy Results of a prospective, open-label, multicenter clinical trial[J]. J Vet Cardiol, 1999, 1(1):19-26. |
[18] | KING J N, MARTIN M, CHETBOUL V, et al. Evaluation of benazepril in cats with heart disease in a prospective, randomized, blinded, placebo-controlled clinical trial[J]. J Vet Intern Med, 2019, 33(6):2559-2571. |
[19] | HOGAN D F. Feline cardiogenic arterial thromboembolism:prevention and therapy[J]. Vet Clin North Am Small Anim Pract, 2017, 47(5):1065-1082. |
[20] | HOGAN D F, FOX P R, JACOB K, et al. Secondary prevention of cardiogenic arterial thromboembolism in the cat:the double-blind, randomized, positive-controlled feline arterial thromboembolism; clopidogrel vs. aspirin trial (FAT CAT)[J]. J Vet Cardiol, 2015, 17:S306-S317. |
[21] | GREEN E M, WAKIMOTO H, ANDERSON R L, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice[J]. Science, 2016, 351(6273):617-621. |
[22] | STERN J A, MARKOVA S, UEDA Y, et al. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy[J]. PLoS One, 2016, 11(12):e0168407. |
[23] | OLIVOTTO I, OREZIAK A, BARRIALES-VILLA R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM):a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2020, 396(10253):759-769. |
[24] | FERGUSON B S, STERN J A, OLDACH M S, et al. Acute effects of a mavacamten-like myosin-inhibitor (MYK-581 in a feline model of obstructed hypertrophic cardiomyopathy:evidence of improved ventricular filling (beyond obstruction reprieve)[J]. Eur Heart J, 2020, 41(S2):ehaa946. 3713. |
[25] | HO C Y, LÓPEZ B, COELHO-FILHO O R, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy[J]. N Engl J Med, 2010, 363(6):552-563. |
[26] | DAVIES M J, MCKENNA W J. Hypertrophic cardiomyopathy-pathology and pathogenesis[J]. Histopathology, 1995, 26(6):493-500. |
[27] | MEWTON N, LIU C Y, CROISILLE P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol, 2011, 57(8):891-903 |
[28] | KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imag, 2020, 13(5):1221-1234. |
[29] | KHOR K H, CAMPBELL F E, OWEN H, et al. Myocardial collagen deposition and inflammatory cell infiltration in cats with pre-clinical hypertrophic cardiomyopathy[J]. Vet J, 2015, 203(2):161-168. |
[30] | KITZ S, FONFARA S, HAHN S, et al. Feline hypertrophic cardiomyopathy:the consequence of cardiomyocyte-initiated and macrophage-driven remodeling processes?[J]. Vet Pathol, 2019, 56(4):565-575. |
[31] | NOVO MATOS J, GARCIA-CANADILLA P, SIMCOCK I C, et al. Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1):20169. |
[32] | CESTA M F, BATY C J, KEENE B W, et al. Pathology of end-stage remodeling in a family of cats with hypertrophic cardiomyopathy[J]. Vet Pathol, 2005, 42(4):458-467. |
[33] | BIASATO I, FRANCESCONE L, LA ROSA G, et al. Anatomopathological staging of feline hypertrophic cardiomyopathy through quantitative evaluation based on morphometric and histopathological data[J]. Res Vet Sci, 2015, 102:136-141. |
[34] | CHRISTIANSEN L B, PRATS C, HYTTEL P, et al. Ultrastructural myocardial changes in seven cats with spontaneous hypertrophic cardiomyopathy[J]. J Vet Cardiol, 2015, 17 Suppl 1:S220-S232. |
[35] | GALLO E M, LOCH D C, HABASHI J P, et al. Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis[J]. J Clin Invest, 2014, 124(1):448-460. |
[36] | LANG C C, STRUTHERS A D. Targeting the renin-angiotensin-aldosterone system in heart failure[J]. Nat Rev Cardiol, 2013, 10(3):125-134. |
[37] | LI Y, CAI X J, GUAN Y Q, et al. Adiponectin upregulates MiR-133a in cardiac hypertrophy through AMPK activation and reduced ERK1/2 phosphorylation[J]. PLoS One, 2016, 11(2):e0148482. |
[38] | YANG T, CHEN Y Y, LIU J R, et al. Natural products against renin-angiotensin system for antifibrosis therapy[J]. Eur J Med Chem, 2019, 179:623-633. |
[39] | AMES M K, ATKINS C E, PITT B. The renin-angiotensin-aldosterone system and its suppression[J]. J Vet Intern Med, 2019, 33(2):363-382. |
[40] | SEIFARTH C, TRENKEL S, SCHOBEL H, et al. Influence of antihypertensive medication on aldosterone and renin concentration in the differential diagnosis of essential hypertension and primary aldosteronism[J]. Clin Endocrinol, 2002, 57(4):457-465. |
[41] | GRAY M O, LONG C S, KALINYAK J E, et al. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts[J]. Cardiovasc Res, 1998, 40(2):352-363. |
[42] | CAMPBELL S E, KATWA L C. Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts[J]. J Mol Cell Cardiol, 1997, 29(7):1947-1958. |
[43] | RUBTSOV Y P, RUDENSKY A Y. TGFβ signalling in control of T-cell-mediated self-reactivity[J]. Nat Rev Immunol, 2007, 7(6):443-453. |
[44] | ROLDN V, MARÍN F, GIMENO J R, et al. Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy[J]. Am Heart J, 2008, 156(1):85-91. |
[45] | BUJAK M, FRANGOGIANNIS N G. The role of TGF-β signaling in myocardial infarction and cardiac remodeling[J]. Cardiovasc Res, 2007, 74(2):184-195. |
[46] | KOITABASHI N, DANNER T, ZAIMAN A L, et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload[J]. J Clin Invest, 2011, 121(6):2301-2312. |
[47] | FUJIO K, KOMAI T, INOUE M, et al. Revisiting the regulatory roles of the TGF-β family of cytokines[J]. Autoimmun Rev, 2016, 15(9):917-922. |
[48] | KHALIL H, KANISICAK O, PRASAD V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Invest, 2017, 127(10):3770-3783. |
[49] | YUE Y Y, MENG K, PU Y J, et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy[J]. Diabetes Res Clin Pract, 2017, 133:124-130. |
[50] | YUAN M, HAI Z, ZHU X X, et al. Transforming growth factor β:A potential biomarker and therapeutic target of ventricular remodeling[J]. Oncotarget, 2017, 8(32):53780-53790. |
[51] | AUPPERLE H, BALDAUF K, MÄRZ I. An immunohistochemical study of feline myocardial fibrosis[J]. J Comparat Pathol, 2011, 145(2-3):158-173. |
[52] | FONFARA S, HETZEL U, HAHN S, et al. Age-and gender-dependent myocardial transcription patterns of cytokines and extracellular matrix remodelling enzymes in cats with non-cardiac diseases[J]. Exp Gerontol, 2015, 72:117-123. |
[53] | COLSTON J T, BOYLSTON W H, FELDMAN M D, et al. Interleukin-18 knockout mice display maladaptive cardiac hypertrophy in response to pressure overload[J]. Biochem Biophys Res Commun, 2007, 354(2):552-558. |
[54] | YU Q L, VAZQUEZ R, KHOJEINI E V, et al. IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice[J]. Am J Physiol Heart Circulat Physiol, 2009, 297(1):H76-H85. |
[55] | HEDAYAT M, MAHMOUDI M J, ROSE N R, et al. Proinflammatory cytokines in heart failure:double-edged swords[J]. Heart Fail Rev, 2010, 15(6):543-562. |
[56] | FIX C, BINGHAM K, CARVER W. Effects of interleukin-18 on cardiac fibroblast function and gene expression[J]. Cytokine, 2011, 53(1):19-28. |
[57] | PAYNE J, LUIS FUENTES V, BOSWOOD A, et al. Population characteristics and survival in 127 referred cats with hypertrophic cardiomyopathy (1997 to 2005)[J]. J Small Anim Pract, 2010, 51(10):540-547. |
[58] | MANABE I, SHINDO T, NAGAI R. Gene expression in fibroblasts and fibrosis:involvement in cardiac hypertrophy[J]. Circul Res, 2002, 91(12):1103-1113. |
[59] | CUI N, HU M, KHALIL R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Progr Mol Biol Trans Sci, 2017, 147:1-73. |
[60] | SEGURA A M, FRAZIER O H, BUJA L M. Fibrosis and heart failure[J]. Heart Fail Rev, 2014, 19(2):173-185. |
[61] | KOGA M, KURAMOCHI M, KARIM M R, et al. Immunohistochemical characterization of myofibroblasts appearing in isoproterenol-induced rat myocardial fibrosis[J]. J Vet Med Sci, 2019, 81(1):127-133. |
[62] | LIU W Y, SUN H H, SUN P F. MicroRNA-378 attenuates myocardial fibrosis by inhibiting MAPK/ERK pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(10):4398-4405. |
[63] | WEBER K, ROSTERT N, BAUERSACHS S, et al. Serum microRNA profiles in cats with hypertrophic cardiomyopathy[J]. Mol Cell Biochem, 2015, 402(1):171-180. |
[64] | MITCHELL P S, PARKIN R K, KROH E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci USA, 2008, 105(30):10513-10518. |
[65] | BOMBACK A S, REKHTMAN Y, KLEMMER P J, et al. Aldosterone breakthrough during aliskiren, valsartan, and combination (aliskiren+valsartan) therapy[J]. J Am Soc Hypertens, 2012, 6(5):338-345. |
[66] | CHEN H, LI M, LIU L, et al. Telmisartan improves myocardial remodeling by inhibiting leptin autocrine activity and activating PPARγ[J]. Exp Biol Med, 2020, 245(7):654-666. |
[67] | TSYBOULEVA N, ZHANG L F, CHEN S, et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy[J]. Circulation, 2004, 109(10):1284-1291. |
[68] | MACDONALD K A, KITTLESON M D, KASS P H. Effect of spironolactone on diastolic function and left ventricular mass in Maine Coon cats with familial hypertrophic cardiomyopathy[J]. J Vet Intern Med, 2008, 22(2):335-341. |
[69] | LÓPEZ B, QUEREJETA R, GONZLEZ A, et al. Impact of treatment on myocardial Lysyl oxidase expression and collagen cross-linking in patients with heart failure[J]. Hypertension, 2009, 53(2):236-242. |
[70] | POISSONNIER C, GHAZAL S, PASSAVIN P, et al. Tolerance of torasemide in cats with congestive heart failure:a retrospective study on 21 cases (2016-2019)[J]. BMC Vet Res, 2020, 16(1):339. |
[71] | 曹蕾, 刘乃丰. 他汀类药物干预心肌纤维化的机制[J]. 东南大学学报:医学版, 2012, 31(4):496-500.CAO L, LIU N F. Mechanism of statin intervention on myocardial fibrosis[J]. J Southeast Univ:Med Ed, 2012, 31(4):496-500. (in Chinese) |
[72] | MARTIN J, DENVER R, BAILEY M, et al. In vitro inhibitory effects of atorvastatin on cardiac fibroblasts:Implications for ventricular remodelling[J]. Clin Exp Pharmacol Physiol, 2005, 32(9):697-701. |
[73] | GELLIBERT F, DE GOUVILLE A C, WOOLVEN J, et al. Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H-pyran-4-yl)benzamide (GW788388):a potent, selective, and orally active transforming growth factor-β type I receptor inhibitor[J]. J Med Chem, 2006, 49(7):2210-2221. |
[74] | LIU C H, LIM S T, TEO M H Y, et al. Collaborative regulation of LRG1 by TGF-β1 and PPAR-β/δ modulates chronic pressure overload-induced cardiac fibrosis[J]. Circul Heart Fail, 2019, 12(12):e005962. |
[75] | LIU M M, KÖSTER L S, FOSGATE G T, et al. Cardiovascular-renal axis disorder and acute-phase proteins in cats with congestive heart failure caused by primary cardiomyopathy[J]. J Vet Intern Med, 2020, 34(3):1078-1090. |
[76] | YU Y H, ZHANG Y H, DING Y Q, et al. MicroRNA-99b-3p promotes angiotensin II-induced cardiac fibrosis in mice by targeting GSK-3β[J]. Acta Pharmacol Sin, 2021, 42(5):715-725. |
[77] | JIANG W Y, XIONG Y Y, LI X S, et al. Cardiac fibrosis:cellular effectors, molecular pathways, and exosomal roles[J]. Front Cardiovasc Med, 2021, 8:715258. |
[78] | 陆莹, 彭金咏. 抗心肌纤维化天然产物的研究进展[J]. 中国现代应用药学, 2021, 38(6):762-768.LU Y, PENG J Y. Advance on natural products against myocardial fibrosis[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(6):762-768. (in Chinese). |
[1] | 郭云鹏, 牛顿, 李爽, 姜兴昊, 张立夏, 任桂萍, 尹杰超. 利用1型糖尿病小鼠模型分析犬成纤维生长因子21的长效降糖效果[J]. 畜牧兽医学报, 2024, 55(2): 770-784. |
[2] | 张鹏, 王明秀, 敬科民, 彭巍, 田园, 李雨谦, 付长其, 舒适, 钟金城, 蔡欣. FGFs/FGFRs及其介导信号通路基因的异常表达影响犏牛未分化精原细胞增殖活性[J]. 畜牧兽医学报, 2023, 54(7): 2886-2897. |
[3] | 张凯照, 胡会, 许泽锴, 王诗倩, 崔红杰, 黄小红. 玉米赤霉烯酮对鸡胚成纤维细胞的毒性作用[J]. 畜牧兽医学报, 2022, 53(5): 1615-1625. |
[4] | 赵凤琴, 周蕾, 王智阅, 孙东禹, 朴君, 朴敬爱, 金梅. 二甲基砷酸对辽宁绒山羊皮肤成纤维细胞的毒性作用以及诱导细胞凋亡的机制[J]. 畜牧兽医学报, 2021, 52(7): 1845-1857. |
[5] | 李月娇, 崔燕, 张倩, 何俊峰. CTGF和FGF-2在不同年龄牦牛肺内的分布与表达研究[J]. 畜牧兽医学报, 2021, 52(7): 2025-2033. |
[6] | 张大俊, 侯景, 申超超, 徐国伟, 孔汉金, 成伟伟, 郑海学, 刘湘涛, 张克山. 羊传染性脓疱病毒感染山羊皮肤成纤维上皮细胞差异表达miRNA分析[J]. 畜牧兽医学报, 2020, 51(8): 1932-1938. |
[7] | 张婧婧, 王德光, 周小兵, 高晔, 何晓琳, 陈玉林, 张恩平. VEGF对体外培养绒山羊次级毛囊外根鞘细胞的影响[J]. 畜牧兽医学报, 2018, 49(6): 1124-1133. |
[8] | 谢军, 孙英杰, 周昌娈, 朱善元, 丁铲, 柏家林. 禽流感病毒H9N2与新城疫病毒在鸡成纤维细胞中共感染对病毒复制的影响[J]. 畜牧兽医学报, 2018, 49(11): 2521-2528. |
[9] | 刘孜斐, 邓明田, 任才芳, 万永杰, 王锋. 克隆山羊成纤维细胞IGF2-H19基因座甲基化分析[J]. 畜牧兽医学报, 2017, 48(12): 2277-2285. |
[10] | 杨彬,徐丹丹,孙志鹏,赵佳琦,闫博巍,李晓婷,武瑞. 金黄色葡萄球菌对奶牛乳腺成纤维细胞TGF-β1/Smad信号通路及其转分化的影响[J]. 畜牧兽医学报, 2016, 47(7): 1495-1501. |
[11] | 魏如雪,赵学明,郝海生,杜卫华,朱化彬. 兔胎儿成纤维细胞的分离培养和鉴定[J]. 畜牧兽医学报, 2016, 47(6): 1272-1279. |
[12] | 孙洪新,王红娜,张英杰,刘月琴,陈晓勇,敦伟涛. BMPR-IB基因的克隆及其在绒山羊成纤维细胞中的表达[J]. 畜牧兽医学报, 2016, 47(6): 1124-1132. |
[13] | 岳敏,田雨光,万斌,庞炜,吴清洪,王玉珏. 生长激素受体基因突变对西藏藏猪生长迟缓的影响[J]. 畜牧兽医学报, 2016, 47(5): 882-887. |
[14] | 杜卫华,范宗兴,王皓宇,郝海生,刘岩,赵学明,秦彤,朱化彬. 爪蟾卵母细胞抽提物可诱导牛胎儿成纤维细胞发生部分重编程[J]. 畜牧兽医学报, 2015, 46(9): 1549-1556. |
[15] | 皮文辉,周平,王立民,唐红,郭延华,张译元,刘守仁,王新华. TALENs编辑绵羊成纤维细胞FGF 5基因[J]. 畜牧兽医学报, 2015, 46(5): 704-710. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||