畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (3): 417-425.doi: 10.11843/j.issn.0366-6964.2020.03.002
阳美霞, 张羽芳, 汤亚茹, 张虹亮*, 王水莲*
收稿日期:
2019-10-08
出版日期:
2020-03-25
发布日期:
2020-03-20
通讯作者:
张虹亮,主要从事动物生殖与发育调控研究,E-mail:zhanghongliang456@163.com;王水莲,主要从事动物生殖调控研究,E-mail:wangshuilian1234@126.com
作者简介:
阳美霞(1994-),女,湖南邵阳人,博士生,主要从事动物生殖调控研究,E-mail:1217360984@qq.com
基金资助:
YANG Meixia, ZHANG Yufang, TANG Yaru, ZHANG Hongliang*, WANG Shuilian*
Received:
2019-10-08
Online:
2020-03-25
Published:
2020-03-20
摘要: 在大多数雌性哺乳动物中,早期原始卵泡的形成主要包括3个过程:原始生殖细胞的迁移、生殖细胞减数分裂和生殖细胞巢破裂。原始卵泡形成与发育过程涉及到诸多因子和信号通路的调节作用,且原始卵泡库的大小及储备能力将决定雌性动物终生生殖能力。本文就参与原始卵泡形成和发育过程中的因子和信号通路作一综述,旨在深入了解参与原始卵泡形成与发育的细胞和分子机制,为维持原始卵泡库及促进原始卵泡激活提供研究思路。
中图分类号:
阳美霞, 张羽芳, 汤亚茹, 张虹亮, 王水莲. 哺乳动物原始卵泡形成与发育的研究进展[J]. 畜牧兽医学报, 2020, 51(3): 417-425.
YANG Meixia, ZHANG Yufang, TANG Yaru, ZHANG Hongliang, WANG Shuilian. Research Progresses on the Formation and Development of Primordial Follicles in Mammals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 417-425.
[1] | WANG C, ZHOU B, XIA G. Mechanisms controlling germline cyst breakdown and primordial follicle formation[J]. Cell Mol Life Sci, 2017, 74(14):2547-2566. |
[2] | WEAR H M,MCPIKE M J,WATANABE K H.From primordial germ cells to primordial follicles:a review and visual representation of early ovarian development in mice[J].J Ovarian Res,2016,9(1):36. |
[3] | SARRAJ M A, DRUMMOND A E. Mammalian foetal ovarian development:consequences for health and disease[J]. Reproduction, 2012, 143(2):151-163. |
[4] | DE SOUSA LOPES S M C,HAYASHI K,SURANI M A.Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors[J].BMC Dev Biol,2007,7:140. |
[5] | KANAMORI M,OIKAWA K,TANEMURA K,et al.Mammalian germ cell migration during development,growth,and homeostasis[J]. Reprod Med Biol,2019,18(3):247-255. |
[6] | ARA T,NAKAMURA Y,EGAWA T,et al.Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine,stromal cell-derived factor-1(SDF-1)[J].Proc Natl Acad Sci USA,2003,100(9):5319-5323. |
[7] | MOLYNEAUX K A,ZINSZNER H,KUNWAR P S,et al.The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival[J].Development,2003,130(18):4279-4286. |
[8] | CANTÚ A V,ALTSHULER-KEYLIN S,LAIRD D J.Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling[J].J Cell Biol,2016,214(2):215-229. |
[9] | MCLAREN A.Meiosis and differentiation of mouse germ cells[J].Symp Soc Exp Biol,1984,38:7-23. |
[10] | EDSON M A,NAGARAJA A K,MATZUK M M.The mammalian ovary from genesis to revelation[J].Endocr Rev,2009, 30(6):624-712. |
[11] | BALTUS A E,MENKE D B,HU Y C,et al.In germ cells of mouse embryonic ovaries,the decision to enter meiosis precedes premeiotic DNA replication[J].Nat Genet,2006,38(12):1430-1434. |
[12] | QIU X H,LI M L,LI N,et al.Maternal diabetes impairs the initiation of meiosis in murine female germ cells[J].Mol Med Rep,2017,16(4):5189-5194. |
[13] | WANG Y J,TENG Z,LI G,et al.Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary[J].Development,2015,142(2):343-351. |
[14] | FENG Y M,LIANG G J,PAN B,et al.Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse[J].Cell Cycle,2014,13(5):782-791. |
[15] | KIM S M,YOKOYAMA T,NG D,et al.Retinoic acid-stimulated ERK1/2 pathway regulates meiotic initiation in cultured fetal germ cells[J].PLoS One,2019,14(11):e0224628. |
[16] | LIANG G J,ZHANG X F,WANG J J,et al.Activin A accelerates the progression of fetal oocytes throughout meiosis and early oogenesis in the mouse[J].Stem Cells Dev,2015,24(20):2455-2465. |
[17] | ZHANG H Q,ZHANG X F,ZHANG L J,et al.Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes[J].Mol Biol Rep,2012,39(5):5651-5657. |
[18] | ELKOUBY Y M,MULLINS M C.Coordination of cellular differentiation,polarity,mitosis and meiosis-new findings from early vertebrate oogenesis[J].Dev Biol,2017,430(2):275-287. |
[19] | PEPLING M E,SPRADLING A C.Female mouse germ cells form synchronously dividing cysts[J].Development, 1998, 125(17):3323-3328. |
[20] | PEPLING M E,SPRADLING A C.Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles[J]. Dev Biol,2001,234(2):339-351. |
[21] | TINGEN C,KIM A,WOODRUFF T K.The primordial pool of follicles and nest breakdown in mammalian ovaries[J].Mol Hum Reprod,2009,15(12):795-803. |
[22] | XU J X,GRIDLEY T.Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles[J].BMC Biol,2013,11:13. |
[23] | TROMBLY D J,WOODRUFF T K,MAYO K E.Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation[J].Endocrinology,2009,150(2):1014-1024. |
[24] | CHEN C L,FU X F,WANG L Q,et al.Primordial follicle assembly was regulated by notch signaling pathway in the mice[J].Mol Biol Rep,2014,41(3):1891-1899. |
[25] | VANORNY D A,PRASASYA R D,CHALPE A J,et al.Notch signaling regulates ovarian follicle formation and coordinates follicular growth[J].Mol Endocrinol,2014,28(4):499-511. |
[26] | YORK J P,REN Y A,ZENG J,et al.Growth arrest specific 2(GAS2) is a critical mediator of germ cell cyst breakdown and folliculogenesis in mice[J].Sci Rep,2016,6:34956. |
[27] | HUANG K,WANG Y,ZHANG T,et al.JAK signaling regulates germline cyst breakdown and primordial follicle formation in mice[J].Biol Open,2018,7(1):bio029470. |
[28] | NIU W B,WANG Y,WANG Z P,et al.JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice[J].Development,2016,143(10):1778-1787. |
[29] | XU J J,HUANG J J,PAN Q J,et al.Gestational diabetes promotes germ cell cCyst breakdown and primordial follicle formation in newborn mice via the AKT signaling pathway[J].PLoS One,2019,14(4):e0215007. |
[30] | CHEN Y,JEFFERSON W N,NEWBOLD R R,et al.Estradiol,progesterone,and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo[J].Endocrinology,2007,148(8):3580-3590. |
[31] | LEI L,JIN S Y,MAYO K E,et al.The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis[J].Biol Reprod,2010,82(1):13-22. |
[32] | MU X Y,LIAO X G,CHEN X M,et al.DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms[J].J Hazard Mater,2015,298:232-240. |
[33] | KARAVAN J R,PEPLING M E.Effects of estrogenic compounds on neonatal oocyte development[J].Reprod Toxicol,2012, 34(1):51-56. |
[34] | MAKKER A,GOEL M M,MAHDI A A.PI3K/PTEN/Akt and TSC/mTOR signaling pathways,ovarian dysfunction,and infertility:an update[J].J Mol Endocrinol,2014,53(3):R103-R118. |
[35] | VADLAKONDA L,DASH A,PASUPULETI M,et al.The paradox of Akt-mTOR interactions[J].Front Oncol,2013,3:165. |
[36] | ZHENG W J,NAGARAJU G,LIU Z L,et al.Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary[J].Mol Cell Endocrinol,2012,356(1-2):24-30. |
[37] | ZHOU S,YAN W,SHEN W,et al.Low expression of SEMA6C accelerates the primordial follicle activation in the neonatal mouse ovary[J].J Cell Mol Med,2018,22(1):486-496. |
[38] | SOBINOFF A P,NIXON B,ROMAN S D,et al.Staying alive:PI3K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity[J].Toxicol Sci,2012,128(1):258-271. |
[39] | ADHIKARI D,RISAL S,LIU K,et al.Pharmacological inhibition of mTORC1 prevents over-activation of the primordial follicle pool in response to elevated PI3K signaling[J].PLoS One,2013,8(1):e53810. |
[40] | ZHOU L Y,XIE Y Q,LI S,et al.Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo[J].J Ovarian Res,2017,10(1):56. |
[41] | JANG H,LEE O H,LEE Y,et al.Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary[J].J Pineal Res,2016,60(3):336-347. |
[42] | GROSBOIS J,DEMEESTERE I.Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation[J]. Hum Reprod,2018,33(9):1705-1714. |
[43] | BEZERRA M É S,BARBERINO R S,MENEZES V G,et al.Insulin-like growth factor-1(IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway[J].Reprod Fertil Dev,2018,30(11):1503-1513. |
[44] | VANORNY D A,MAYO K E.The role of Notch signaling in the mammalian ovary[J].Reproduction,2017,153(6):R187-R204. |
[45] | TERAUCHI K J,SHIGETA Y,IGUCHI T,et al.Role of Notch signaling in granulosa cell proliferation and polyovular follicle induction during folliculogenesis in mouse ovary[J].Cell Tissue Res,2016,365(1):197-208. |
[46] | WANG L Q,LIU J C,CHEN C L,et al.Regulation of primordial follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways[J].Reprod Fertil Dev,2016,28(6):700-712. |
[47] | GUO M,ZHANG H,BIAN F H,et al.P4 down-regulates Jagged2 and Notch1 expression during primordial folliculogenesis[J]. Front Biosci (Elite Ed),2012,4:2631-2644. |
[48] | REISS K,SAFTIG P.The "A Disintegrin and Metalloprotease" (ADAM) family of sheddases:physiological and cellular functions[J]. Semin Cell Dev Biol,2009,20(2):126-137. |
[49] | FENG L Z,WANG Y J,CAI H,et al.ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice[J].J Cell Sci,2016,129(11):2202-2212. |
[50] | MANOVA K,HUANG E J,ANGELES M,et al.The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia[J].Dev Biol,1993,157(1):85-99. |
[51] | JONES R L,PEPLING M E.KIT signaling regulates primordial follicle formation in the neonatal mouse ovary[J].Dev Biol,2013,382(1):186-197. |
[52] | PARROTT J A,SKINNER M K.Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis[J].Endocrinology,1999,140(9):4262-4271. |
[53] | HUTT K J,MCLAUGHLIN E A,HOLLAND M K.KIT/KIT ligand in mammalian oogenesis and folliculogenesis:roles in rabbit and murine ovarian follicle activation and oocyte growth[J].Biol Reprod,2006,75(3):421-433. |
[54] | GOUGEON A,DELANGLE A,AROUCHE N,et al.Kit ligand and the somatostatin receptor antagonist,BIM-23627,stimulate in vitro resting follicle growth in the neonatal mouse ovary[J].Endocrinology,2010,151(3):1299-1309. |
[55] | CAVALCANTE A Y P,GOUVEIA B B,BARBERINO R S,et al.Kit ligand promotes the transition from primordial to primary follicles after in vitro culture of ovine ovarian tissue[J].Zygote,2016,24(4):578-582. |
[56] | KNAPCZYK-STWORA K,GRZESIAK M,DUDA M,et al.Effect of flutamide on folliculogenesis in the fetal porcine ovary-regulation by Kit ligand/c-Kit and IGF1/IGF1R systems[J].Anim Reprod Sci,2013,142(3-4):160-167. |
[57] | PEARSON G,ROBINSON F,GIBSON T B,et al.Mitogen-Activated Protein (MAP) kinase pathways:regulation and physiological functions[J]. Endocr Rev,2001,22(2):153-183. |
[58] | DAVIS R J.Signal transduction by the JNK group of MAP kinases[J].Cell,2000,103(2):239-252. |
[59] | ZHENG L P,ZHANG D L,HUANG J,et al.Proto-oncogene c-erbB2 initiates rat primordial follicle growth via PKC and MAPK pathways[J].Reprod Biol Endocrinol,2010,8:66. |
[60] | ZHAO Y,ZHANG Y,LI J,et al.MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling[J]. J Cell Physiol,2018,233(1):226-237. |
[61] | ROSS S,HILL C S.How the Smads regulate transcription[J].Int J Biochem Cell Biol,2008,40(3):383-408. |
[62] | DING X Y,ZHANG X L,MU Y L,et al.Effects of BMP4/SMAD signaling pathway on mouse primordial follicle growth and survival via up-regulation of Sohlh2 and c-kit[J].Mol Reprod Dev,2013,80(1):70-78. |
[63] | XIANG C,LI J,HU L L,et al.Hippo signaling pathway reveals a spatio-temporal correlation with the size of primordial follicle pool in mice[J].Cell Physiol Biochem,2015,35(3):957-968. |
[64] | HU L L,SU T,LUO R C,et al.Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice[J].J Cell Physiol,2019,234(2):1578-1587. |
[65] | DICKINSON R E,MYERS M,DUNCAN W C.Novel regulated expression of the SLIT/ROBO pathway in the ovary:possible role during luteolysis in women[J].Endocrinology,2008,149(10):5024-5034. |
[66] | DICKINSON R E,HRYHORSKYJ L,TREMEWAN H,et al.Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary[J].Reproduction,2010,139(2):395-407. |
[67] | BERTOLDO M J,BERNARD J,DUFFARD N,et al.Inhibitors of c-Jun phosphorylation impede ovine primordial follicle activation[J].Mol Hum Reprod,2016,22(5):338-349. |
[1] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[2] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[3] | 王娜娜, 李颀菡, 马媛, 金昊延, 胡亚美, 马云, 张令锴. TLR7和TLR8在家畜性控技术中的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 427-437. |
[4] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[5] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[6] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[7] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[8] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[9] | 田启会, 张亮, 龙亚丽. 黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J]. 畜牧兽医学报, 2024, 55(1): 346-354. |
[10] | 韩坤良, 兰伟, 胡新, 崔亚东, 孔祥峰. 复方中药超微粉对蛋鸡抗氧化性能及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(9): 3784-3792. |
[11] | 李悦欣, 刘爱菊, 马晓菲, 郑忠, 胡伯欣, 智云霞, 田树军. TGFβR1介导TGF-β/Smad信号通路对绵羊颗粒细胞功能的影响[J]. 畜牧兽医学报, 2023, 54(8): 3335-3347. |
[12] | 张鹏, 王明秀, 敬科民, 彭巍, 田园, 李雨谦, 付长其, 舒适, 钟金城, 蔡欣. FGFs/FGFRs及其介导信号通路基因的异常表达影响犏牛未分化精原细胞增殖活性[J]. 畜牧兽医学报, 2023, 54(7): 2886-2897. |
[13] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
[14] | 王唯, 贺小云, 储明星. 昼夜节律与雌激素协同调控哺乳动物生殖的研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1771-1781. |
[15] | 陈永平, 寇玉红, 焦文静, 侯晓昱, 范宏刚. 辅酶Q10改善LPS诱导小鼠急性肺损伤的效应分析[J]. 畜牧兽医学报, 2023, 54(4): 1730-1741. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||