畜牧兽医学报 ›› 2026, Vol. 57 ›› Issue (1): 553-563.doi: 10.11843/j.issn.0366-6964.2026.01.048

• 临床兽医 • 上一篇    下一篇

基于电子鼻检测的奶牛产后子宫炎早期预警模型初步研究

王芳1,2(), 刚华晟1,2, 张榕1,2, 段宏伟1,2, 胡俊杰1,2()   

  1. 1.甘肃农业大学动物医学院,兰州 730070
    2.甘肃省动物生殖生理与繁殖调控重点实验室,兰州 730070
  • 收稿日期:2024-12-11 出版日期:2026-01-23 发布日期:2026-01-26
  • 通讯作者: 胡俊杰 E-mail:18719806885@163.com;hujj@gsau.edu.cn
  • 作者简介:王芳,硕士,主要从事奶牛围产期疾病研究,E-mail:18719806885@163.com
  • 基金资助:
    甘肃省科技厅奶牛围产期疾病预警技术研发与示范建设基金资助(21JR7RA858)

A Preliminary Study on the Early Warning Model of Postpartum Metritis in Dairy Cows based on Electronic Nose Detection

WANG Fang1,2(), GANG Huasheng1,2, ZHANG Rong1,2, DUAN Hongwei1,2, HU Junjie1,2()   

  1. 1.College of Veterinary Medicine,Gansu Agricultural University,Lanzhou 730070,China
    2.Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation,Lanzhou 730070,China
  • Received:2024-12-11 Online:2026-01-23 Published:2026-01-26
  • Contact: HU Junjie E-mail:18719806885@163.com;hujj@gsau.edu.cn

摘要:

旨在评估电子鼻检测奶牛粪便建立的子宫炎预警模型准确性。本研究使用电子鼻检测50头健康和22头子宫炎奶牛发病前粪便以及血液样本挥发性有机化合物(volatile organic compounds,VOCs),正交偏最小二乘判别分析(orthogonal partial least squares discriminant analysis,OPLS-DA)模型初步分析数据。按7∶3划分训练集和测试集,建立预警模型并评估电子鼻预测子宫炎的性能。结果发现,健康和子宫炎奶牛发病前的粪便以及血液明显区分并各自聚类,在本研究中粪便是建立预警模型的最佳样本来源。选择决策树(Decision Tree,DT)、随机森林(Random Forest,RF)、K-邻近算法(K-Nearest Neighbors,KNN)、梯度提升(eXtreme Gradient Boosting,XGBoost)和线性判别分析(Linear Discriminant Analysis,LDA)5种不同的机器学习算法建立模型,结合模型评估指标和受试者特征(Receiver Operating Characteristic,ROC)曲线分析预测效率。研究发现测试集准确率(Accuracy,ACC)分别达到0.88、0.96、0.88、0.91、0.98,曲线下面积(Area Under Curve,AUC)分别是0.86、0.98、0.95、0.98、1.00。因此,RF和LDA模型预测性能表现最佳,电子鼻预测子宫炎的发生具有较高的准确性。综上,电子鼻检测奶牛发病前粪便VOCs能达到预警子宫炎的目的,在奶牛疾病的预警诊断中有很大的应用前景。

关键词: 奶牛子宫炎, 电子鼻, 机器学习算法, 早期预警

Abstract:

The aim of this study was to evaluate the accuracy of the early warning model for metritis in dairy cows established by electronic nose detection. The detection of volatile organic compounds (VOCs) in feces and blood samples of 50 healthy dairy cows and 22 metritis cows before onset by electronic nose, preliminary analysis of data by orthogonal partial least squares discriminant analysis (OPLS-DA) model. The training set and test set were divided according to 7∶3, the early warning model was established and the performance of the electronic nose in predicting metritis was evaluated. The results showed that, the feces and blood of healthy and metritis dairy cows were clearly distinguished and clustered respectively. In this study feces are the best sample source for establishing an early warning model. Five different machine learning algorithms, namely decision tree (DT), random forest (RF), K-nearest neighbors (KNN), eXtreme gradient boosting (XGBoost), and linear discriminant analysis (LDA), were used to build models. Predictive efficiency is analyzed in conjunction with model evaluation metrics and receiver operating characteristic curves (ROC). It was found that the test set accuracy (ACC) reached 0.88、0.96、0.88、0.91、0.98. Area under curve (AUC) was 0.86、0.98、0.95、0.98 and 1.00. As a result, the RF and LDA models perform the best in terms of predictive performance. The electronic nose has a high accuracy in predicting the occurrence of uterine infections. In conclusion, the detection of fecal VOCs of dairy cows before onset by electronic nose can achieve the purpose of early warning of metritis inflammation and has a great application prospect in the early diagnosis of dairy cow diseases.

Key words: metritis, electronic nose, machine learning algorithm, early warning

中图分类号: