

畜牧兽医学报 ›› 2026, Vol. 57 ›› Issue (1): 96-107.doi: 10.11843/j.issn.0366-6964.2026.01.009
赵秀美1(
), 赵海娜4, 华姝4, 程旭2, 陈祥3, 姜逸2(
)
收稿日期:2025-04-09
出版日期:2026-01-23
发布日期:2026-01-26
通讯作者:
姜逸
E-mail:zhao_xiumei@126.com;yijiang620@126.com
作者简介:赵秀美,讲师,主要从事禽病病原学研究,E-mail:zhao_xiumei@126.com
基金资助:
ZHAO Xiumei1(
), ZHAO Haina4, HUA Shu4, CHENG Xu2, CHEN Xiang3, JIANG Yi2(
)
Received:2025-04-09
Online:2026-01-23
Published:2026-01-26
Contact:
JIANG Yi
E-mail:zhao_xiumei@126.com;yijiang620@126.com
摘要:
冠状病毒RNA基因组由多个开放阅读框组成,除了表达结构蛋白和非结构蛋白外,还可以表达辅助蛋白。冠状病毒辅助蛋白具有种属特异性,不同冠状病毒编码数量不等的辅助蛋白。冠状病毒辅助蛋白不是病毒复制所必需的,但是部分辅助蛋白参与宿主免疫反应,在病毒发病机制和病毒毒力中起重要作用。冠状病毒辅助蛋白研究为开发治疗药物提供新的潜在靶点,为疾病预防和治疗提供理论指导。本文对几种具有代表性冠状病毒的辅助蛋白的功能进行综述,重点介绍辅助蛋白与病毒-宿主相互作用的关系,包括辅助蛋白在促进宿主细胞凋亡、宿主天然免疫调节,以及在宿主体内致病性的作用,有助于了解冠状病毒的感染和发病机制,为研制新型疫苗和抗病毒药物提供参考。
中图分类号:
赵秀美, 赵海娜, 华姝, 程旭, 陈祥, 姜逸. 冠状病毒辅助蛋白功能研究进展[J]. 畜牧兽医学报, 2026, 57(1): 96-107.
ZHAO Xiumei, ZHAO Haina, HUA Shu, CHENG Xu, CHEN Xiang, JIANG Yi. Research Progress on the Functions of Coronavirus Accessory Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2026, 57(1): 96-107.
| [1] | ASHOUR H M,ELKHATIB W F,RAHMAN M M,et al.Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks[J].Pathogens,2020,9(3):186. |
| [2] | KIRTIPAL N,BHARADWAJ S,KANG S G.From SARS to SARS-CoV-2,insights on structure,pathogenicity and immunity aspects of pandemic human coronaviruses[J].Infect Genet Evol,2020,85:104502. |
| [3] | HOERR F J.The pathology of infectious bronchitis[J].Avian Dis,2021,65(4):600-611. |
| [4] | WILLE M,HOLMES E C.Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses[J].FEMS Microbiol,2020,44:631-644. |
| [5] | LEDNICKY J A,TAGLIAMONTE M S,WHITE S K,et al.Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution[J].Nature,2021,600(7887):133-137. |
| [6] | FANG P,FANG L,ZHANG H,et al.Functions of coronavirus accessory proteins:overview of the state of the art[J].Viruses,2021,13(6):1139. |
| [7] | YOSHIMOTO F K.The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or N-COV19),the cause of COVID-19[J].Protein J,2020,39(3):198-216. |
| [8] | MICHEL C J,MAYER C,POCH O,et al.Characterization of accessory genes in coronavirus genomes[J].Virol J,2020,17(1):131. |
| [9] | LIU D X,FUNG T S,CHONG K K,et al.Accessory proteins of SARS-CoV and other coronaviruses[J].Antiviral Res,2014,109:97-109. |
| [10] | WU A,PENG Y,HUANG B,et al.Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China[J].Cell Host Microbe,2020,27(3):325-328. |
| [11] | TAYLOR R C,CULLEN S P,MARTIN S J.Apoptosis:controlled demolition at the cellular level[J].Nat Rev Mol Cell Biol,2008,9(3):231-41. |
| [12] | PADHAN K,MINAKSHI R,BIN TOWHEED M A,et al.Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation[J].J Gen Virol,2008,89:1960-1969. |
| [13] | TAN Y X,TAN T H,LEE M J,et al.Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein[J].J Virol,2007,81:6346-6355. |
| [14] | TAN Y J,FIELDING B C,GOH P Y.Overexpression of 7a,a protein specifically encoded by the severe acute respiratory syndrome coronavirus,induces apoptosis via a caspase-dependent pathway[J].J Virol,2004,78:14043-14047. |
| [15] | YE Z D,WONG C K,LI P,et al.The role of SARS-CoV protein,ORF-6,in the induction of host cell death[J].Hong Kong Med J,2010,16(5 Suppl 4):22-6. |
| [16] | CHEN C Y,PING Y H,LEE H C,et al.Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis[J].J Infect Dis,2007,196:405-415. |
| [17] | REN Y,SHU T,WU D,et al.The ORF3a protein of SARS-CoV-2 induces apoptosis in cells[J].Cell Mol Immunol,2020,17:881-883. |
| [18] | VARSHNEY B,AGNIHOTHRAM S,TAN Y J,et al.SARS coronavirus 3b accessory protein modulates transcriptional activity of RUNX1b[J].PLoS One,2012,7(1):e29542. |
| [19] | MINAKSHI R,PADHAN K,RANI M.The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor[J].PLoS One,2009,4(12):e8342. |
| [20] | YE Z,WONG C K,LI P,et al.SARS-CoV protein,ORF-6,induces caspase-3 mediated,ER stress and JNK-dependent apoptosis[J].Biochim Biophys Acta,2008,1780(12):1383-1387. |
| [21] | FUNG T S,LIU D X.The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus[J].Virology,2019,533:34-44. |
| [22] | FUNG T S,LIAO Y,LIU D X.The endoplasmic reticulum stress sensor IRE1 protects cells from apoptosis induced by the coronavirus infectious bronchitis virus[J].J Virol,2014,88:12752-12764. |
| [23] | ZOU D,XU J,DUAN X,et al.Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy[J].Vet Microbiol,2019,235:209-219. |
| [24] | V’KOVSKI P,KRATZEL A,STEINER S,et al.Coronavirus biology and replication:implications for SARS-CoV-2[J].Nat Rev Microbiol,2021,19(3):155-170. |
| [25] | YOO J S,KATO H,FUJITA T.Sensing viral invasion by RIG-I like receptors[J].Curr Opin Microbiol,2014,20:131-138. |
| [26] | SIU K L,YEUNG M L,KOK K H.Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response[J].J Virol,2014,88:4866-4876. |
| [27] | FANG P,FANG L,REN J,et al.Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-Stranded RNA[J].J Virol,2018,92(15):e00712-18. |
| [28] | XIAO X,FU Y,YOU W.Inhibition of the RLR signaling pathway by SARS-CoV-2 ORF7b is mediated by MAVS and abrogated by ORF7b-homologous interfering peptide[J].J Virol,2024,98(5):e0157323. |
| [29] | LI X,HOU P,MA W.SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy[J].Cell Mol Immunol,2022,19(1):67-78. |
| [30] | SHI C S,QI H Y.SARS-Coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome[J].J Immunol,2014,193:3080-3089. |
| [31] | GAO X,ZHU K,QIN B.Crystal structure of SARS-CoV-2 ORF9b in complex with human TOM70 suggests unusual virus-host interactions[J].Nat Commun,2021,12(1):2843. |
| [32] | WU J,SHI Y,PAN X.SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO[J].Cell Rep,2021,34(7):108761. |
| [33] | NIE Y,MOU L,LONG Q.SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ- NEMO interaction[J].Virus Res,2023,328:199086. |
| [34] | RUI Y,SHEN S,WANG Y,et al.HIV-1 vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling[J].Sci Signal,2025,18(870):eadd6593. |
| [35] | FANG P,FANG L,XIA S.Porcine deltacoronavirus accessory protein NS7a antagonizes IFN-β production by competing with TRAF3 and IRF3 for binding to IKKε[J].Front Cell Infect Microbiol,2020,10:257. |
| [36] | YANG Y,YE F,ZHU N,et al.Middle east respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets[J].Sci Rep,2015,5:17554. |
| [37] | WONG L R,YE Z W,LUI P Y,et al.Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKepsilon[J].J Immunol,2020,205:1564-1579. |
| [38] | WONG H H,FUNG T S,FANG S,et al.Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3[J].Virology,2018,515:165-175. |
| [39] | CANTON J,FEHR A R,FERNANDEZ-DELGADO R,et al.MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection[J].PLoS Pathog,2018,14(1):e1006838. |
| [40] | ZHANG Q,SHI K,YOO D.Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J].Virology,2016,489:252-68. |
| [41] | ZHENG L,LIU H,TIAN Z.Porcine epidemic diarrhea virus (PEDV) ORF3 protein inhibits cellular type I interferon signaling through down-regulating proteins expression in RLRs-mediated pathway[J].Res Vet Sci,2023,159:146-159. |
| [42] | LEI X,DONG X,MA R.Activation and evasion of type I interferon responses by SARS-CoV-2[J].Nat Commun,2020,11(1):3810. |
| [43] | CHEN J,LU Z,YANG X.Severe acute respiratory syndrome coronavirus 2 ORF8 protein inhibits type I interferon production by targeting HSP90B1 signaling[J].Front Cell Infect Microbiol,2022,12:899546. |
| [44] | CHENG W,CHEN S,LI R.Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor[J].Virol Sin,2015,30(2):153-161. |
| [45] | WANG J,YANG B,HU Y,et al.Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7[J].J Immunol,2013,191(6):3393-3399. |
| [46] | MIORIN L,KEHRER T,SANCHEZ-APARICIO M T,et al.SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling[J].Proc Nat Acad Sci USA,2020,117(45):28344-28354. |
| [47] | XIA H,CAO Z,XIE X,et al.Evasion of type I interferon by SARS-CoV-2[J].Cell Rep,2020,33(1):108234. |
| [48] | BEIDAS M,CHEHADEH W.Effect of human coronavirus OC43 structural and accessory proteins on the transcriptional activation of antiviral response elements[J].Intervirology,2018,61(1):30-35. |
| [49] | YANG Y,ZHANG L,GENG H,et al.The structural and accessory proteins M,ORF 4a,ORF 4b,and ORF 5 of middle east respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists[J].Protein Cell,2013,4(12):951-961. |
| [50] | LU Y,SU X,DU C.Genetic diversity of porcine epidemic diarrhea virus with a naturally occurring truncated ORF3 gene found in Guangxi,China[J].Front Vet Sci,2020,7:435. |
| [51] | ZHANG Y H,LI H X,CHEN X M.Genetic characteristics and pathogenicity of a novel porcine epidemic diarrhea virus with a naturally occurring truncated ORF3 gene[J].Viruses,2022,14(3):487. |
| [52] | HAIJEMA B J,VOLDERS H,ROTTIER P J M.Live,attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis[J].J Virol,2004,78:3863-3871. |
| [53] | DEDEURWAERDER A,DESMARETS L M,OLYSLAEGERS D A.The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes[J].Vet Microbiol,2013,162:447-455. |
| [54] | CRUZ J L,SOLA I,BECARES M.Coronavirus gene 7 counteracts host defenses and modulates virus virulence[J].PLoS Pathog,2011,7(6):e1002090. |
| [55] | ISSA E,MERHI G,PANOSSIAN B,et al.SARS-CoV-2 and ORF3a:nonsynonymous mutations,functional domains,and viral pathogenesis[J].mSystems,2020,5(3):e00266-20. |
| [56] | HASSAN S S,CHOUDHURY P P,BASU P,et al.Molecular conservation and differential mutation on ORF3a gene in Indian SARS-CoV2 genomes[J].Genomics,2020,112(5):3226-3237. |
| [57] | HASSAN S S,ATTRISH D,GHOSH S,et al.Pathogenic perspective of missense mutations of ORF3a protein of SARS-CoV-2[J]. Virus Res,2021,300:198441. |
| [58] | SILVAS J A,VASQUEZ D M,PARK J G,et al.Contribution of SARS-CoV-2 accessory proteins to viral pathogenicity in K18 human ACE2 transgenic mice[J].J Virol,2021,95(17):e0040221. |
| [59] | YOUNG B E,FONG S W,CHAN Y H,et al.Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response:an observational cohort study[J].Lancet,2020,396(10251):603-611. |
| [60] | LIU Y,ZHANG X,LIU J.A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions[J]. Nat Commun,2022,13(1):4337. |
| [61] | BELLO-PEREZ M,HURTADO-TAMAYO J,MYKYTYN A Z.SARS-CoV-2 ORF8 accessory protein is a virulence factor[J].mBio,2023,14(5):e0045123. |
| [62] | PEWE L,ZHOU H,NETLAND J,et al.A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus[J].J Virol,2005,79(17):11335-11342. |
| [63] | DE HAAN C A,MASTERS P S,SHEN X,et al.The group-specific murine coronavirus genes are not essential,but their deletion,by reverse genetics,is attenuating in the natural host[J].Virology,2002,296(1):177-189. |
| [64] | MENACHERY V D,MITCHELL H D,COCKRELL A S.MERS-CoV accessory ORFs play key role for infection and pathogenesis[J].mBio,2017,8(4):e00665-17. |
| [65] | LI Y,JIN Y,KUANG L.The N-terminal region of middle east respiratory syndrome coronavirus accessory protein 8b is essential for enhanced virulence of an attenuated murine coronavirus[J].J Virol,2022,96(3):e0184221. |
| [66] | VAN BEURDEN S J,BERENDS A J,KRÄMER-KÜHL A,et al.Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens[J].Vaccine,2018,36 (8):1085-1092. |
| [67] | LACONI A,VAN BEURDEN S J,BERENDS A J,et al.Deletion of accessory genes 3a,3b,5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo[J].J Gen Virol,2018,99 (10):1381-1390. |
| [68] | ZHAO X,JIANG Y,CHENG X,et al.Pathogenicity of a QX-like strain of infectious bronchitis virus and effects of accessory proteins 3a and 3b in chickens[J].Vet Microbiol,2019,239 (4):108-114. |
| [69] | ZHAO Y,CHENG J,YAN S,et al.S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus[J].Virology,2019,533 (2):12-20. |
| [70] | ZHANG M,LI W,ZHOU P,et al.Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions:a novel strategy for vaccine design[J].Emerg Microbes Infect,2019,9(1):20-31. |
| [71] | YE C,PARK J G,CHIEM K.Immunization with recombinant accessory protein-deficient SARS-CoV-2 protects against lethal challenge and viral transmission[J]. Microbiol Spectr,2023,11(3):e0065323. |
| [72] | ZHANG C,GERZANICH V,CRUZ-COSME R,et al.SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production[J].mBio,2024,15(11):e0230824. |
| [73] | ZHANG J,HOM K,ZHANG C.SARS-CoV-2 ORF3a protein as a therapeutic target against COVID-19 and long-term post-infection effects[J].Pathogens,2024,13(1):75. |
| [74] | ZHANG Y,CHEN Y,LI Y.The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι[J].Proc Natl Acad Sci U S A,2021,118(23):e2024202118. |
| [75] | ZINZULA L.Lost in deletion:the enigmatic ORF8 protein of SARS-CoV-2[J].Biochem Biophys Res Commun,2021,538:116-124. |
| [76] | JIANG H W,ZHANG H N,MENG Q F.SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70[J].Cell Mol Immunol,2020,17(9):998-1000. |
| [1] | 黎梦帆, 李青阳, 宋艳雯, 宋振辉, 张兴翠. 冠状病毒S蛋白的结构和功能研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4241-4252. |
| [2] | 麦艳琪, 孙晓筝, 刘晓烜, 梁星烂, 黄颍, 吴晓娟, 柳贤德, 裴业春. 表达rFel d 1的重组大肠杆菌预防猫主要变应原Fel d 1诱发的过敏性哮喘的效果分析[J]. 畜牧兽医学报, 2025, 56(9): 4529-4545. |
| [3] | 刘君君, 郭东辉, 刘缓缓, 宋润泽, 赵赛娅, 杨钧尧, 魏战勇, 项玉强, 陈丽颖. 基于免疫磁珠的智能手机辅助比色传感平台用于PDCoV/TGEV IgG抗体的快速检测[J]. 畜牧兽医学报, 2025, 56(9): 4559-4571. |
| [4] | 国桂海, 马茹梦, 尹方洁, 刘芯孜, 王梓, 孟伟静, 李佳璇, 崔文, 姜艳平, 唐丽杰, 赵海渊, 王晓娜. 表达猪流行性腹泻病毒S1基因重组罗伊氏黏液乳杆菌诱导仔猪特异性免疫应答的研究[J]. 畜牧兽医学报, 2025, 56(9): 4581-4592. |
| [5] | 余秋蓉, 蔡旭航, 何艺, 李基棕, 毛立, 许信刚, 李彬. 一株羊冠状病毒的分离鉴定及全基因组序列分析[J]. 畜牧兽医学报, 2025, 56(9): 4604-4614. |
| [6] | 陶丽寒, 林翠, 吴诚诚, 康昭风, 黄建珍. 猪丁型冠状病毒编码蛋白结构与功能研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3678-3689. |
| [7] | 薛晓晓, 孟令宅, 王素艳, 于蒙蒙, 陈运通, 祁小乐, 李留安, 于晓雪, 高玉龙. B亚型禽偏肺病毒病弱毒疫苗对商品蛋鸡的免疫效果[J]. 畜牧兽医学报, 2025, 56(8): 3958-3966. |
| [8] | 田茹, 付星玮, 胡乐玉, 朱明君, 童德文. 一株GⅡa型猪流行性腹泻病毒的分离与致病性分析[J]. 畜牧兽医学报, 2025, 56(8): 4101-4111. |
| [9] | 向令娴, 季倩宇, 单新新, 李琳. 细菌双组分系统的耐药性及致病性研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3116-3128. |
| [10] | 陈云龙, 樊港, 樊心怡, 郭永超, 张鑫淼, 王妍, 张仕强. 一株具有多位点核苷酸替换的新型猪圆环病毒2d亚型毒株的分离与鉴定[J]. 畜牧兽医学报, 2025, 56(6): 3032-3040. |
| [11] | 陈云, 陈丽圆, 宋文静, 张新科, 徐菡, 吴嘉仪, 赵翠燕, 张守全. T-2毒素对雄性动物生殖系统毒害机制的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2038-2046. |
| [12] | 吴芊卉, 张愉, 张桃妮, 磨美兰. 脂筏参与冠状病毒感染的机制及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2112-2122. |
| [13] | 王亚楠, 郭雅茹, 姜艳平, 崔文, 李佳璇, 李一经, 王丽. 猪轮状病毒的分离鉴定及其致病性分析[J]. 畜牧兽医学报, 2025, 56(5): 2259-2269. |
| [14] | 胡米, 沈瑶歆, 范宝超, 孙敏, 周金柱, 郭容利, 李彬. Eudragit L100修饰的铝锰双金属有机框架作为猪流行性腹泻灭活疫苗口服递送载体的初步评价[J]. 畜牧兽医学报, 2025, 56(5): 2292-2230. |
| [15] | 张晓玲, 何兴林, 张梦迪, 李鹏飞, 孙玉梅, 马海龙, 朱红梅, 张梦佳, 李文涛. 猪瘟病毒E2蛋白纳米颗粒的制备及在家兔上的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(5): 2301-2311. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||