畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3206-3216.doi: 10.11843/j.issn.0366-6964.2023.08.008
武琪, 张玉娟, 刘桐, 辛九庆*, 徐青元*
收稿日期:
2022-12-16
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
辛九庆,主要从事动物传染病及其病原分子流行病学研究,E-mail:xinjiuqing@caas.cn;徐青元,主要从事动物传染病及其病原分子流行病学研究,E-mail:xuqingyuan@caas.cn
作者简介:
武琪(1998-),女,河南三门峡人,硕士生,主要从事动物传染病及其病原分子流行病学研究,E-mail:3468704132@qq.com
基金资助:
WU Qi, ZHANG Yujuan, LIU Tong, XIN Jiuqing*, XU Qingyuan*
Received:
2022-12-16
Online:
2023-08-23
Published:
2023-08-22
摘要: 牛支原体(M.bovis)是感染牛的一种重要病原体,可导致感染牛出现肺炎、关节炎、乳房炎、角膜结膜炎和生殖道炎等多种临床症状,给养牛业造成了巨大经济损失。M.bovis黏附素在M.bovis致病过程中发挥重要作用,包括病原感染、细胞入侵、免疫逃逸和毒力产生。迄今为止,已鉴定出十多种M.bovis黏附素。这些黏附素主要结合宿主细胞的纤溶酶原(plasminogen,Plg)、纤连蛋白(fibronectin,FN)、硫酸肝素(heparin sulfate,HS)和淀粉样前体样蛋白-2(amyloid precursor-like protein-2,APLP2)。本文将对目前已知的M.bovis黏附素及其宿主细胞靶蛋白的研究现状进行综述,为M.bovis已知和未知黏附素的鉴定和应用提供参考。
中图分类号:
武琪, 张玉娟, 刘桐, 辛九庆, 徐青元. 牛支原体黏附素及黏附素结合蛋白研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3206-3216.
WU Qi, ZHANG Yujuan, LIU Tong, XIN Jiuqing, XU Qingyuan. Research Progress of Mycoplasma bovis Adhesins and Adhesin-binding Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3206-3216.
[1] | HALE H H, HELMBOLDT C F, PLASTRIDGE W N, et al. Bovine mastitis caused by a Mycoplasma species[J]. Cornell Vet, 1962, 52:582-591. |
[2] | 辛九庆, 李 媛, 郭 丹, 等. 国内首次从患肺炎的犊牛肺脏中分离到牛支原体[J]. 中国预防兽医学报, 2008, 30(9):661-664.XIN J Q, LI Y, GUO D, et al. First isolation of Mycoplasma bovis from calf lung with pneumoniae in China[J]. Chinese Journal of Preventive Veterinary Medicine, 2008, 30(9):661-664. (in Chinese) |
[3] | 石 磊, 龚 瑞, 尹争艳, 等. 肉牛传染性牛支原体肺炎流行的初步诊断[J]. 华中农业大学学报, 2008, 27(4):572.SHI L, GONG R, YIN Z Y, et al. Preliminary diagnosis of cattle infectious Mycoplasma bovis pneumonia[J]. Journal of Huazhong Agricultural University, 2008, 27(4):572. (in Chinese) |
[4] | 伍晓红, 储岳峰, 张 轩, 等. 牛支原体的分离鉴定及16 S rRNA基因序列分析[J]. 动物医学进展, 2012, 33(12):35-37.WU X H, CHU Y F, ZHANG X, et al. Isolation, identification and sequence analysis of 16 S rRNA gene of Mycoplasma bovis[J]. Progress in Veterinary Medicine, 2012, 33(12):35-37. (in Chinese) |
[5] | 司怀军. 牛支原体病的诊断和控制[J]. 吉林畜牧兽医, 2022, 43(9):77-78.SI H J. Diagnosis and control of Mycoplasma bovis disease[J]. Jilin Animal Husbandry and Veterinary Medicine, 2022, 43(9):77-78. (in Chinese) |
[6] | DUDEK K, NICHOLAS R A J, SZACAWA E, et al. Mycoplasma bovis infections-occurrence, diagnosis and control[J]. Pathogens, 2020, 9(8):640. |
[7] | CALCUTT M J, LYSNYANSKY I, SACHSE K, et al. Gap analysis of Mycoplasma bovis disease, diagnosis and control:an aid to identify future development requirements[J]. Transbound Emerg Dis, 2018, 65 Suppl 1:91-109. |
[8] | TAYLOR J D, FULTON R W, LEHENBAUER T W, et al. The epidemiology of bovine respiratory disease:what is the evidence for predisposing factors[J]. Can Vet J, 2010, 51(10):1095-1102. |
[9] | 李明霞, 郝华芳, 赵 萍, 等. 牛支原体黏附和侵入宿主细胞的研究进展[J].中国兽医学报, 2018, 38(7):1440-1444.LI M X, HAO F H, ZHAO P, et al. Research advances in Mcoplasma bovis adhesion and invasion to hostcell[J].Chinese Journal of Veterinary Science, 2018, 38(7). 1440-1444. (in Chinese) |
[10] | BVRKI S, FREY J, PILO P. Virulence, persistence and dissemination of Mycoplasma bovis[J]. Vet Microbiol, 2015, 179(1-2):15-22. |
[11] | 刘 畅, 曹钰晗, 赵春阳, 等. 牛支原体膜蛋白的研究进展[J]. 中国兽医学报, 2018, 38(10):2011-2014, 2019.LIU C, CAO Y H, ZHAO C Y, et al. Research progress of Mycoplasma bovis membrane protein[J]. Chin J Vet Sci, 2018, 38(10):2011-2014, 2019. (in Chinese) |
[12] | KUMAR A, VERMA A K, GANGWAR N K, et al. Isolation, characterization and antibiogram of Mycoplasma bovis in sheep pneumonia[J]. Asian J Anim Vet Adv, 2012, 7(2):149-157. |
[13] | RODRÍGUEZ F, SARRADELL J, POVEDA J B, et al. Immunohistochemical characterization of lung lesions induced experimentally by Mycoplasma agalactiae and Mycoplasma bovis in goats[J]. J Comp Pathol, 2000, 123(4):285-293. |
[14] | SPERGSER J, MACHER K, KARGL M, et al. Emergence, re-emergence, spread and host species crossing of Mycoplasma bovis in the Austrian Alps caused by a single endemic strain[J]. Vet Microbiol, 2013, 164(3-4):299-306. |
[15] | DYER N W, KROGH D F, SCHAAN L P. Pulmonary mycoplasmosis in farmed white-tailed deer (Odocoileus virginianus)[J]. J Wildl Dis, 2004, 40(2):366-370. |
[16] | PITCHER D G, NICHOLAS R A J. Mycoplasma host specificity:fact or fiction?[J]. Vet J, 2005, 170(3):300-306. |
[17] | MAUNSELL F P, WOOLUMS A R, FRANCOZ D, et al. Mycoplasma bovis infections in cattle[J]. J Vet Intern Med, 2011, 25(4):772-783. |
[18] | AYLING R, NICHOLAS R, HOGG R, et al. Mycoplasma bovis isolated from brain tissue of calves[J]. Vet Rec, 2005, 156(12):391-392. |
[19] | THOMAS A, SACHSE K, DIZIER I, et al. Adherence to various host cell lines of Mycoplasma bovis strains differing in pathogenic and cultural features[J]. Vet Microbiol, 2003, 91(2-3):101-113. |
[20] | XU Q Y, PAN Q, WU Q, et al. Mycoplasma bovis adhesins and their target proteins[J]. Front Immunol, 2022, 13:1016641. |
[21] | MUCHNIK L, ADAWI A, OHAYON A, et al. NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice[J]. PLoS One, 2013, 8(4):e61128. |
[22] | ZHAO G, ZHANG H, CHEN X, et al. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin[J]. Sci Rep, 2017, 7(1):44. |
[23] | 包世俊, 朱彩宏, 邢小勇, 等. 牛支原体NOX2的原核表达及黏附特性[J]. 畜牧兽医学报, 2020, 51(11):2895-2902.BAO S J, ZHU C H, XING X Y, et al. Prokaryotic expression of NOX2 of Mycoplasma bovis and its adherence characterization[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11):2895-2902. (in Chinese) |
[24] | RUTTER W J. Evolution of aldolase[J]. Fed Proc, 1964, 23:1248-1257. |
[25] | CHAVES E G A, WEBER S S, BÁO S N, et al. Analysis of Paracoccidioides secreted proteins reveals fructose 1, 6-bisphosphate aldolase as a plasminogen-binding protein[J]. BMC Microbiol, 2015, 15:53. |
[26] | ZIVERI J, TROS F, GUERRERA I C, et al. The metabolic enzyme fructose-1, 6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella[J]. Nat Commun, 2017, 8(1):853. |
[27] | RODAKI A, YOUNG T, BROWN A J P. Effects of depleting the essential central metabolic enzyme fructose-1, 6-bisphosphate aldolase on the growth and viability of Candida albicans:implications for antifungal drug target discovery[J]. Eukaryot Cell, 2006, 5(8):1371-1377. |
[28] | TUNIO S A, OLDFIELD N J, BERRY A, et al. The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis:surface localization and role in host cell adhesion[J]. Mol Microbiol, 2010, 76(3):605-615. |
[29] | HAN X Y, ZHU X Y, HONG Z Q, et al. Structure-based rational design of novel inhibitors against fructose-1, 6-bisphosphate aldolase from Candida albicans[J]. J Chem Inf Model, 2017, 57(6):1426-1438. |
[30] | HUANG J, ZHU H M, WANG J Y, et al. Fructose-1, 6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin[J]. Res Vet Sci, 2019, 124:70-78. |
[31] | GAO X, BAO S J, XING X Y, et al. Fructose-1, 6-bisphosphate aldolase of Mycoplasma bovis is a plasminogen-binding adhesin[J]. Microb Pathog, 2018, 124:230-237. |
[32] | ADAMU J Y, MITIKU F, HARTLEY C A, et al. Mycoplasma bovis mbfN encodes a novel LRR lipoprotein that undergoes proteolytic processing and binds host extracellular matrix components[J]. J Bacteriol, 2020, 203(2):e00154-20. |
[33] | SONG Z Q, LI Y, LIU Y, et al. α-enolase, an adhesion-related factor of Mycoplasma bovis[J]. PLoS One, 2012, 7(6):e38836. |
[34] | SHARMA S, MARKHAM P F, BROWNING G F. Genes found essential in other mycoplasmas are dispensable in Mycoplasma bovis[J]. PLoS One, 2014, 9(6):e97100. |
[35] | LEE N. Characterization of an ATP-binding cassette (ABC) transport system involved in nucleoside uptake in Mycoplasma bovis strain M23, and discovery of its pathogenicity genes[D]. Ames:Iowa State University, 2009. |
[36] | ADAMU J Y, WAWEGAMA N K, KANCI CONDELLO A, et al. Mycoplasma bovis membrane protein MilA is a multifunctional lipase with novel lipid and glycosaminoglycan binding activity[J]. Infect Immun, 2020, 88(6):e00945-19. |
[37] | GUO Y P, ZHU H M, WANG J Y, et al. TrmFO, a fibronectin-binding adhesin of Mycoplasma bovis[J]. Int J Mol Sci, 2017, 18(8):1732. |
[38] | URBONAVI AČG IUS J, SKOULOUBRIS S, MYLLYKALLIO H, et al. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria-evolutionary implications[J]. Nucleic Acids Res, 2005, 33(13):3955-3964. |
[39] | ZOU X H, LI Y, WANG Y, et al. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis hubei-1 strain[J]. PLoS One, 2013, 8(7):e69644. |
[40] | ZHU X F, DONG Y Q, BARANOWSKI E, et al. Mbov_0503 encodes a novel cytoadhesin that facilitates Mycoplasma bovis interaction with tight junctions[J]. Microorganisms, 2020, 8(2):164. |
[41] | CHEN X, HUANG J, ZHU H M, et al. P27 (MBOV_RS03440) is a novel fibronectin binding adhesin of Mycoplasma bovis[J]. Int J Med Microbiol, 2018, 308(7):848-857. |
[42] | KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif[J]. Curr Opin Struct Biol, 2001, 11(6):725-732. |
[43] | BERTHOLD E, HELLER M, PFVTZNER H, et al. Preparation and characterization of monoclonal antibodies against Mycoplasma bovis[J]. Zentralbl Veterinarmed B, 1992, 39(5):353-361. |
[44] | SACHSE K, PFVTZNER H, HELLER M, et al. Inhibition of Mycoplasma bovis cytadherence by a monoclonal antibody and various carbohydrate substances[J]. Vet Microbiol, 1993, 36(3-4):307-316. |
[45] | SACHSE K, GRAJETZKI C, ROSENGARTEN R, et al. Mechanisms and factors involved in Mycoplasma bovis adhesion to host cells[J]. Zentralbl Bakteriol, 1996, 284(1):80-92. |
[46] | THOMAS A, LEPRINCE P, DIZIER I, et al. Identification by two-dimensional electrophoresis of a new adhesin expressed by a low-passaged strain of Mycoplasma bovis[J]. Res Microbiol, 2005, 156(5-6):713-718. |
[47] | LYSNYANSKY I, SACHSE K, ROSENBUSCH R, et al. The vsp locus of Mycoplasma bovis:gene organization and structural features[J]. J Bacteriol, 1999, 181(18):5734-5741. |
[48] | THOMAS A, SACHSE K, FARNIR F, et al. Adherence of Mycoplasma bovis to bovine bronchial epithelial cells[J]. Microb Pathog, 2003, 34(3):141-148. |
[49] | SACHSE K, HELBIG J H, LYSNYANSKY I, et al. Epitope mapping of immunogenic and adhesive structures in repetitive domains of Mycoplasma bovis variable surface lipoproteins[J]. Infect Immun, 2000, 68(2):680-687. |
[50] | PATEL S, MATHIVANAN N, GOYAL A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal[J]. Biomed Pharmacother, 2017, 93:763-771. |
[51] | LI J, WANG J, SHAO J, et al. The variable lipoprotein family participates in the interaction of Mycoplasma hyorhinis with host extracellular matrix and plasminogen[J]. Vet Microbiol, 2022, 265:109310. |
[52] | COLEMAN J L, BENACH J L. Use of the plasminogen activation system by microorganisms[J]. J Lab Clin Med, 1999, 134(6):567-576. |
[53] | AYÓN-NÚÑEZ D A, FRAGOSO G, BOBES R J, et al. Plasminogen-binding proteins as an evasion mechanism of the host's innate immunity in infectious diseases[J]. Biosci Rep, 2018, 38(5):BSR20180705. |
[54] | AYINUOLA Y A, BRITO-ROBINSON T, AYINUOLA O, et al. Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence[J]. J Biol Chem, 2021, 296:100099. |
[55] | ZHU W F, WEI H J, CHEN L, et al. Characterization of host plasminogen exploitation of Pasteurella multocida[J]. Microb Pathog, 2019, 129:74-77. |
[56] | RAHI A, MATTA S K, DHIMAN A, et al. Enolase of Mycobacterium tuberculosis is a surface exposed plasminogen binding protein[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(1 Pt A):3355-3364. |
[57] | RAYMOND B B A, DJORDJEVIC S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance[J]. Vet Microbiol, 2015, 178(1-2):1-13. |
[58] | WANG J, LI Y, PAN L J, et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation[J]. Vet Res, 2021, 52(1):80. |
[59] | BARBOSA M S, MARQUES L M, TIMENETSKY J, et al. Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae[J]. BMC Microbiol, 2022, 22(1):93. |
[60] | VACA D J, THIBAU A, SCHVTZ M, et al. Interaction with the host:the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria[J]. Med Microbiol Immunol, 2020, 209(3):277-299. |
[61] | HAO F, XIE X, FENG Z X, et al. NADH oxidase of Mycoplasma hyopneumoniae functions as a potential mediator of virulence[J]. BMC Vet Res, 2022, 18(1):126. |
[62] | QI J J, WANG Y, LI H R, et al. Mycoplasma synoviae dihydrolipoamide dehydrogenase is an immunogenic fibronectin/plasminogen binding protein and a putative adhesin[J]. Vet Microbiol, 2022, 265:109328. |
[63] | WANG J, YU Y F, LI Y, et al. A multifunctional enolase mediates cytoadhesion and interaction with host plasminogen and fibronectin in Mycoplasma hyorhinis[J]. Vet Res, 2022, 53(1):26. |
[64] | HENDERSON B, NAIR S, PALLAS J, et al. Fibronectin:a multidomain host adhesin targeted by bacterial fibronectin-binding proteins[J]. FEMS Microbiol Rev, 2011, 35(1):147-200. |
[65] | BROUILLETTE E, GRONDIN G, SHKRETA L, et al. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins[J]. Microb Pathog, 2003, 35(4):159-168. |
[66] | KREIKEMEYER B, OEHMCKE S, NAKATA M, et al. Streptococcus pyogenes fibronectin-binding protein F2:expression profile, binding characteristics, and impact on eukaryotic cell interactions[J]. J Biol Chem, 2004, 279(16):15850-15859. |
[67] | NIEMANN S, NGUYEN M T, EBLE J A, et al. More is not always better-the double-headed role of fibronectin in Staphylococcus aureus host cell invasion[J]. mBio, 2021, 12(5):e0106221. |
[68] | RAYMOND B B A, TURNBULL L, JENKINS C, et al. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells[J]. Sci Rep, 2018, 8(1):17697. |
[69] | COLLINS L E, TROEBERG L. Heparan sulfate as a regulator of inflammation and immunity[J]. J Leukoc Biol, 2019, 105(1):81-92. |
[70] | VIVōS R R, SEFFOUH A, LORTAT-JACOB H. Post-synthetic regulation of HS structure:the yin and yang of the sulfs in cancer[J]. Front Oncol, 2014, 3:331. |
[71] | GARCÍA B, FERNÁNDEZ-VEGA I, GARCÍA-SUÁREZ O, et al. The role of heparan sulfate proteoglycans in bacterial infections[J]. J Med Microb Diagn, 2014, 3(4):1000157. |
[72] | BURNETT T A, DINKLA K, ROHDE M, et al. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae:defined domains of P159 bind heparin and promote adherence to eukaryote cells[J]. Mol Microbiol, 2006, 60(3):669-686. |
[73] | HENRY-STANLEY M, HESS D J, ERICKSON E, et al. Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes[J].Med Microbiol Immunol, 2003, 192(2):107-115. |
[74] | ORDIALES H, ALCALDE I, VÁZQUEZ F, et al. Cell surface glycosaminoglycans as receptors for adhesion of Candida spp. to corneal cells[J]. Pol J Microbiol, 2022, 71(1):55-62. |
[75] | PANDEY P, SLIKER B, PETERS H L, et al. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer[J]. Oncotarget, 2016, 7(15):19430-19444. |
[76] | ROISMAN L C, HAN S, CHUEI M J, et al. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family[J]. FASEB J, 2019, 33(4):5076-5081. |
[77] | HEBER S, HERMS J, GAJIC V, et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members[J]. J Neurosci, 2000, 20(21):7951-7963. |
[78] | VON KOCH C S, ZHENG H, CHEN H et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice[J]. Neurobiol Aging, 1997, 18(6):661-669. |
[1] | 钟乐苗, 刘秉珲, 吴春琳, 吴异健. 基于鸡毒支原体黏附素蛋白的表位疫苗制备及免疫效果评价[J]. 畜牧兽医学报, 2023, 54(12): 5171-5183. |
[2] | 李洪广;王芳;姜平;范志宇;胡波 . 兔支气管败血波氏杆菌PRN基因缺失突变株的构建及特性研究[J]. 畜牧兽医学报, 2012, 43(2): 299-305. |
[3] | 吴庭才;赵战勤;王 臣;张春杰;吴 斌;程相朝;何启盖. 支气管败血波氏杆菌PRN黏附素R1区蛋白的免疫原性[J]. 畜牧兽医学报, 2009, 40(9): 1370-1375. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||