[1] |
SHIN D M, JEON B Y, LEE H M, et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling[J]. PLoS Pathog, 2010, 6(12):e1001230.
|
[2] |
BRIKEN V. Mycobacterium tuberculosis genes involved in regulation of host cell death[J] Adv Exp Med Biol, 2013, 783:93-102.
|
[3] |
AGARWAL P, COMBES T W, SHOJAEE-MORADIE F, et al. Foam cells control Mycobacterium tuberculosis infection[J]. Front Microbiol, 2020, 11:1394.
|
[4] |
SINGH V, JAMWAL S, JAIN R, et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype[J]. Cell Host Microbe, 2012, 12(5):669-681.
|
[5] |
LOVEWELL R R, SASSETTI C M, VANDERVEN B C. Chewing the fat:lipid metabolism and homeostasis during M. tuberculosis infection[J]. Curr Opin Microbiol, 2016, 29:30-36.
|
[6] |
HUANG L, NAZAROVA E V, TAN S M, et al. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny[J]. J Exp Med, 2018, 215(4):1135-1152.
|
[7] |
KANTER J E, KRAMER F, BARHART S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1[J]. Proc Natl Acad Sci U S A, 2012, 109(12):E715-E724.
|
[8] |
O'CONNOR R S, GUO L L, GHASSEMI S, et al. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations[J]. Sci Rep, 2018, 8(1):6289.
|
[9] |
SEGAL W, BLOCH H. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro[J]. J Bacteriol, 1956, 72(2):132-141.
|
[10] |
MARRERO J, RHEE K Y, SCHNAPPINGER D, et al. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection[J]. Proc Natl Acad Sci U S A, 2010, 107(21):9819-9824.
|
[11] |
MCKINNEYK J D, ZU BENTRUP K H, MUÑOZ-ELÍAS E J, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase[J]. Nature, 2000, 406(6797):735-738.
|
[12] |
MUNOZ-ELIA E J, UPTON A M, CHERIAN J, et al. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence[J]. Mol Microbiol, 2006, 60(5):1109-1122.
|
[13] |
PODINOVSKAIA M, LEE W, CALDWELL S, et al. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function[J]. Cell Microbiol, 2013, 15(6):843-859.
|
[14] |
LEE W, VANDERVEN B C, FAHEY R J, et al. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress[J]. J Biol Chem, 2013, 288(10):6788-6800.
|
[15] |
FONTÁN P, ARIS V, GHANNY S, et al. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection[J]. Infect Immun, 2008, 76(2):717-725.
|
[16] |
HOMOLKA S, NIEMANN S, RUSSELL D G, et al. Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates:Delineation of conserved core and lineage-specific transcriptomes during intracellular survival[J]. PLoS Pathog, 2010, 6(7):e1000988.
|
[17] |
RACHMAN H, STRONG M, ULRICHS T, et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosiss[J]. Infect Immun, 2006, 74(2):1233-1242.
|
[18] |
QUEVAL C J, BROSCH R, SIMEONE R. The macrophage:A disputed fortress in the battle against Mycobacterium tuberculosis[J]. Front Microbiol, 2017, 8:2284.
|
[19] |
STEINBERG B E, GRINSTEIN S. Pathogen destruction versus intracellular survival:the role of lipids as phagosomal fate determinants[J]. J Clin Invest, 2008, 118(6):2002-2011.
|
[20] |
PAINK S, JO E K. An interplay between autophagy and immunometabolism for host defense against mycobacterial infection[J]. Front Immunol, 2020, 11:603951.
|
[21] |
RUSSELL D G, CARDONA P J, KIM M J, et al. Foamy macrophages and the progression of the human tuberculosis granuloma[J]. Nat Immunol, 2009, 10(9):943-948.
|
[22] |
RAMAKRISHNAN L. Revisiting the role of the granuloma in tuberculosis[J]. Nat Rev Immunol, 2012, 12(5):352-566.
|
[23] |
WALLIS R S, HAFNER R. Advancing host-directed therapy for tuberculosis[J]. Nat Rev Immunol, 2015, 15(4):255-263.
|
[24] |
RESTREPO B I. Metformin:Candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients[J]. Tuberculosis, 2016, 101(S1):S69-S72.
|
[25] |
CEMMA M, BRUMELL J H. Interactions of pathogenic bacteria with autophagy systems[J]. Curr Biol, 2012, 22(13):R540-R545.
|
[26] |
JO E K, SILWAL P, YUK J M. AMPK-targeted effector networks in mycobacterial infection[J]. Front Microbiol, 2019, 10:520.
|
[27] |
REN J, SOWERS J R, ZHANG Y M. Metabolic stress, autophagy, and cardiovascular aging:from pathophysiology to therapeutics[J]. Trends Endocrinol Metab, 2018, 29(10):699-711.
|
[28] |
SÁNCHEZ-MARTÍN P, KOMATSU M. Physiological stress response by selective autophagy[J]. J Mol Biol, 2020, 432(1):53-62.
|
[29] |
DIVAKARUNI A S, HSIEH W Y, MINARRIETA L, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis[J]. Cell Metab, 2018, 28(3):490-503.
|
[30] |
KUCHITSU Y, FUKUDA M. Revisiting Rab7 functions in mammalian autophagy:Rab7 knockout studies[J]. Cells, 2018, 7(11):215.
|
[31] |
KUCHITSU Y, HOMMA Y, FUJITA N, et al. Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation[J]. J Cell Sci, 2018, 131(7):jcs215442.
|