畜牧兽医学报 ›› 2019, Vol. 50 ›› Issue (4): 791-801.doi: 10.11843/j.issn.0366-6964.2019.04.012

• 营养与饲料 • 上一篇    下一篇

不同疏水性氨基酸对α-螺旋抗菌肽生物学活性的影响

徐欣瑶, 董娜*, 李欣然, 杨洋, 王志华, 单安山   

  1. 东北农业大学动物科学技术学院, 哈尔滨 150030
  • 收稿日期:2018-09-09 出版日期:2019-04-23 发布日期:2019-04-23
  • 通讯作者: 董娜,主要从事动物营养与肠道健康相关研究,E-mail:ndong@neau.edu.cn
  • 作者简介:徐欣瑶(1994-),女,黑龙江哈尔滨人,硕士生,主要从事动物营养与肠道健康相关研究,E-mail:neauxxy@sina.com
  • 基金资助:

    国家自然科学基金(31501914;31472104;31672434)

Effect of Different Hydrophobic Amino Acids on Biological Activity of Alpha Helix Antimicrobial Peptides

XU Xinyao, DONG Na*, LI Xinran, YANG Yang, WANG Zhihua, SHAN Anshan   

  1. Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, China
  • Received:2018-09-09 Online:2019-04-23 Published:2019-04-23

摘要:

天然抗菌肽具有较强的杀菌能力,但其较高的细胞毒性会使肽的细胞选择性降低。为了提高抗菌肽的选择特异性,本研究拟探讨不同疏水性氨基酸对α-螺旋抗菌肽生物学活性的影响及其抑菌机制。笔者采用α-螺旋肽GRX2RX3RX2RG作为模板,分别以疏水性氨基酸色氨酸(Try,W)、苯丙氨酸(Phe,F)、缬氨酸(Val,V)、丙氨酸(Ala,A)、亮氨酸(Leu,L)和异亮氨酸(Ile,I)来替换X位置,得到了一系列富含疏水氨基酸的肽GW、GF、GV、GI、GA和GL。本研究检测了抗菌肽的二级结构、溶血活性、抑菌活性、盐离子活性,并对其抑菌的作用机制进行了研究。结果表明:通过CD光谱试验检测出GF、GI、GA和GL在细胞膜模拟环境中均表现出典型的α螺旋结构,而GV只在TFE中呈现α螺旋结构;溶血试验结果表明,GV和GA在浓度为128 μmol·L-1未表现出溶血活性,而其他肽均表现出较高的溶血活性;抑菌试验发现GV的最小抑菌浓度(MIC)的几何平均值为3.7 μmol·L-1,并具有最高的治疗指数(TI);盐离子稳定性试验表明,在NH4+、Zn2+和Fe3+中GV对大肠杆菌25922(E.coli ATCC 25922)的抑菌能力较稳定。进一步通过扫描电镜和内膜通透性试验对抗菌肽GV的抑菌机制进行分析,结果观察到GV能够通过穿透E.coli ATCC 25922和金黄色葡萄球菌29213(S.aureus ATCC 29213)促使细胞内容物流出而导致细菌死亡,以及通过时间和剂量依赖的方式穿透细菌内膜。综合以上结果,富含Val的GV具有较高的细胞选择性和成为高效抗菌药物的发展潜力。

关键词: α-螺旋抗菌肽, 细胞选择性, 杀菌机制, 溶血, 疏水性

Abstract:

Natural antimicrobial peptides have a strong bactericidal ability, however, low cell selectivity of natural antimicrobial peptides due to their strong cytotoxicity. In order to improve the specificity of antibacterial peptides, the effects of different hydrophobic amino acids on the biological activity of α-helix antimicrobial peptides and bacteriostatic mechanisms were investigated. We employed hydrophobic amino acid tryptophan (Try, T), phenylalanine (Phe, P), valine (Val, V), alanine (Ala, A), leucine (Leu, L) and isoleucine (Ile, I) to replace X position of GRX2RX3RX2RG template. Our study evaluated the secondary structure, hemolytic activity, bacteriostatic activity, salt resistance and studied bacteriostatic mechanism of peptides. The results of CD spectroscopy showed that GF, GI, GA and GL displayed typical α helix structure in the simulated environment of cell membrane, while only GV exhibited α helix structure in TFE. Hemolysis test showed that GV and GA did not exhibit hemolytic activity in the concentration of 128 μmol·L-1, while other peptides showed high hemolytic activity. The geometric average value of minimal inhibitory concentration (MIC) of GV which has the highest therapeutic index is 3.7 μmol·L-1. The stability test showed that GV had the stable antibacterial activity against E. coli ATCC 25922 in the presence of NH4+, Zn2+ and Fe3+. The antimicrobial mechanism of antimicrobial peptide GV was further analyzed by scanning electron microscopy and inner membrane permeability test. The results showed that GV induced outflow of bacterial content via penetrating membrane of E. coli ATCC 25922 and Staphylococcus aureus ATCC 29213 and penetrated inner membrane of E. coli ATCC 25922 by time-and dose-dependence. Collectivity, the Val-rich antimicrobial peptide GV had the highest cell selectivity, and is potential for development of highly effective antibacterial drugs.

Key words: α-helical antibacterial peptides, cell selectivity, bactericidal mechanism, hemolysis, hydrophobic

中图分类号: