

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4129-4142.doi: 10.11843/j.issn.0366-6964.2025.09.001
收稿日期:2024-11-01
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
耿拓宇,龚道清
E-mail:1069905738@qq.com;tygeng@yzu.edu.cn;yzgong@163.com
作者简介:林晓(1997-),女,山东济宁人,博士,主要从事动物遗传与繁殖研究,E-mail:1069905738@qq.com
基金资助:
LIN Xiao(
), LI Ruijie, LIU Long, GENG Tuoyu*(
), GONG Daoqing*(
)
Received:2024-11-01
Online:2025-09-23
Published:2025-09-30
Contact:
GENG Tuoyu, GONG Daoqing
E-mail:1069905738@qq.com;tygeng@yzu.edu.cn;yzgong@163.com
摘要:
动物的性别决定(sex determination)是有性繁殖动物在性别发生分化后分别发育为雌性或雄性个体且出现形态和生理差异的现象。动物的性别决定分为环境型和遗传型。目前已查明一些基因在动物性别决定中扮演重要角色。动物的性别决定还与DNA的甲基化密不可分,比如哺乳动物X染色体的全域DNA甲基化。然而,DNA甲基化在不同物种性别决定中的作用却存在着显著的差异。本文对动物性别决定的影响因素和关键基因以及基因的DNA甲基化与不同物种性别决定的关联进行综述,为进一步研究动物性别决定机制提供有益参考。
中图分类号:
林晓, 李瑞杰, 刘龙, 耿拓宇, 龚道清. 动物的性别决定基因及其甲基化调控的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4129-4142.
LIN Xiao, LI Ruijie, LIU Long, GENG Tuoyu, GONG Daoqing. Research Progress on Sex Determining Genes and Their Methylation Regulation in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4129-4142.
表 1
性别决定相关基因及其作用机制"
| 动物分类 Classification of animals | 物种 Animal species | 基因 Gene | 科学证据 Scientific evidence | 文献 Reference |
| 哺乳动物 Mammal | 小鼠 | SRY | 在正调控因子的作用下,SRY基因在未分化性腺体细胞中开始表达,诱导未分化性腺向雄性分化,SRY基因表达后激活其下游靶基因SOX9的表达,使性腺向睾丸分化 | [ |
| 鸟类 Bird | 鸡 | DMRT1 | 敲除DMRT1基因会导致雄性鸡胚的左侧性腺发生雌性化 | [ |
| 爬行动物 Reptile | 中华鳖 | CYP19A1 | 使用FAD处理以及敲低雌性胚胎的CYP19A1基因后,其性别逆转为雄性 | [ |
| 两栖类 Batrachians | 粗皮蛙 | DMRT1 | 向雌性注射睾酮,促使其发生性逆转,且在性逆转雄性的性腺中,DMRT1基因的表达上调 | [ |
| 非洲瓜蟾 | DM-W | DM-W基因抑制DMRT1基因的表达(可使胚胎雄性化),并上调CYP19A1和FOXL2基因的表达 | [ | |
| 鱼类 Pisces | 青鳉 | SOX3 | SOX3基因在雌性中过表达或在雄性中敲除都会导致性反转 | [ |
| 虹鳟 | CYP19A1 | FAD阻断雌激素的合成,诱导精巢的产生 | [ | |
| 斜带石斑鱼 | SOX9 | SOX9基因的高表达诱导雌性向雄性转化 | [ | |
| 斑马鱼 | CYP19A1 | 敲除CYP19A1基因会导致其发生性反转 | [ | |
| AMH | 敲除AMH基因后,性别比例偏雌性,且雄雌性均发育出肥厚的性腺 | [ | ||
| 尼罗罗非鱼 | GSDF | 雌性GSDF基因过表达会导致其转变为功能性雄鱼,敲除雄性GSDF基因会导致其向雌鱼的性反转 | [ | |
| DMRT1 | 雌性中过表达DMRT1基因会导致后卵巢腔发育迟缓,卵泡退化,部分鱼类出现完全性反转 | [ |
表 2
DNA甲基化在动物性别决定中的作用"
| 动物分类 Classification of animals | 物种 Animal species | 基因 Gene | 科学证据 Scientific evidence | 文献 Reference |
| 哺乳动物 Mammal | 小鼠 | SRY | 在E11.5胚胎中,SRY开始表达,SRY上游CpG位点会发生性腺特异性的低甲基化;在E15.5胚胎中,SRY上游CpG位点又恢复到高甲基化状态而使其表达停止 | [ |
| GADD45G | GADD45G基因被敲除后,其性别会从雄性转变为雌性,这可能与GADD45G基因诱导SRY基因的DNA去甲基化有关 | [ | ||
| 鸟类 Bird | 鸡 | MHM | MHM区域附近的雌性基因的表达量显著高于雄性,雄性性腺的MHM甲基化水平高于雌性 | [ |
| 爬行动物 Reptile | 海龟 | AMH、AR、GATA4、LHX9和SF1 | 在雄性中表达量升高可能是雌性中这些基因启动子甲基化导致的,它们影响卵巢形成,并且在雄性中被甲基化 | [ |
| 美洲鳄 | CYP19A1 | 与在FPT下孵育相比,MPT孵化的胚胎中性腺的CYP19A1基因启动子甲基化水平较高,基因表达水平降低 | [ | |
| SOX9 | 与MPT相比,FPT孵育导致SOX9基因启动子甲基化增加,胚胎性腺中表达量减少 | [ | ||
| 红耳龟 | DMRT1 | MPT性腺中DMRT1基因启动子中CpG甲基化的水平显著低于FPT性腺中DMRT1基因启动子中CpG甲基化的水平 | [ | |
| CYPl9A1 | CYP19A1基因的启动子区域CpG位点的DNA甲基化水平随着温度的变化而变化 | [ | ||
| 短吻鳄 | CYP19A1和SOX9 | MPT下性腺中CYP19A1基因启动子甲基化升高,且相对于在FPT的基因表达水平降低,SOX9基因在雌性胚胎的性腺中的DNA甲基化水平高于雄性 | [ | |
| 两栖动物 Batrachians | 中国大鲵 | LHX9和CYP19A1 | 四个CpG位点在睾丸中的甲基化水平显著高于卵巢,且与LHX9基因的表达呈负相关; CpG甲基化水平与发育中的卵巢的CYP19A1基因的表达呈负相关 | [ |
| 鱼类 Pisces | 硬骨鱼 | CYP19A1和DMRT1 | 近端启动子和第一外显子的DNA甲基化水平在睾丸和卵巢之间存在差异 | [ |
| 欧洲鲈鱼 | CYP19A | 雄性性腺的CYP19A基因启动子处的DNA甲基化水平是雌性的两倍,随着温度的升高,CYP19A基因启动子的DNA甲基化水平也增加 | [ | |
| 黑鲷 | CYP19A1 | CYP19A1基因的启动子会逐渐去甲基化,这与其卵巢发育有关 | [ | |
| 尖吻鲈 | CYP19A1、AMH、DMRT1和NR5A2 | 雄性个体CYP19A1和AMH基因的甲基化水平比雌性高,而雌性中DMRT1和NR5A2基因的甲基化水平比雄性高 | [ | |
| 尼罗罗非鱼 | CYP19A1A | 早期发育阶段经历高温会增加CYP19A1A基因启动子的DNA甲基化水平,这与CYP19A1A基因的mRNA表达水平升高相一致 | [ | |
| 翘嘴鲌鱼 | DMRT1 | DMRT1基因的启动子CpG在睾丸中未甲基化,而在卵巢中高度甲基化 | [ | |
| 舌鳎 | AMH | AMH基因在雄性中的表达量高于雌性,且AMH基因的表达与DNA甲基化有关 | [ |
| 1 |
RACCA J D , CHEN Y S , BRABENDER A R , et al. Role of nucleobase-specific interactions in the binding and bending of DNA by human male sex determination factor SRY[J]. J Biol Chem, 2024, 300 (9): 107683.
doi: 10.1016/j.jbc.2024.107683 |
| 2 |
KASHIMADA K , KOOPMAN P . Sry: the master switch in mammalian sex determination[J]. Development, 2010, 137 (23): 3921- 3930.
doi: 10.1242/dev.048983 |
| 3 |
GRAVES J A . Evolution of vertebrate sex chromosomes and dosage compensation[J]. Nat Rev Genet, 2016, 17 (1): 33- 46.
doi: 10.1038/nrg.2015.2 |
| 4 |
WARREN W C , HILLIER L W , TOMLINSON C , et al. A new chicken genome assembly provides insight into avian genome structure[J]. G3 (Bethesda), 2017, 7 (1): 109- 117.
doi: 10.1534/g3.116.035923 |
| 5 |
LEE H J , SEO M , CHOI H J , et al. DMRT1 gene disruption alone induces incomplete gonad feminization in chicken[J]. FASEB J, 2021, 35 (9): e21876.
doi: 10.1096/fj.202100902R |
| 6 |
ESTERMANN M A , MAJOR A T , SMITH C A . Genetic regulation of avian testis development[J]. Genes (Basel), 2021, 12 (9): 1459.
doi: 10.3390/genes12091459 |
| 7 |
郑钢, 连玲. 鸡性别决定及分化关键调控基因DMRT1研究进展[J]. 畜牧兽医学报, 2023, 54 (8): 3152- 3163.
doi: 10.11843/j.issn.0366-6964.2023.08.003 |
|
ZHENG G , LIAN L . Research progress on the key regulatory gene DMRT1 of chicken sex determination and differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3152- 3163.
doi: 10.11843/j.issn.0366-6964.2023.08.003 |
|
| 8 |
ZHAO D , MCBRIDE D , NANDI S , et al. Somatic sex identity is cell autonomous in the chicken[J]. Nature, 2010, 464 (7286): 237- 242.
doi: 10.1038/nature08852 |
| 9 |
HUANG S , YE L , CHEN H . Sex determination and maintenance: the role of DMRT1 and FOXL2[J]. Asian J Androl, 2017, 19 (6): 619- 624.
doi: 10.4103/1008-682X.194420 |
| 10 | CHARNIER M . Action of temperature on the sex ratio in the Agama agama (Agamidae, Lacertilia) embryo[J]. C R Seances Soc Biol Fil, 1966, 160 (3): 620- 622. |
| 11 |
YAO H H , CAPEL B . Temperature, genes, and sex: a comparative view of sex determination in Trachemys scripta and Mus musculus[J]. J Biochem, 2005, 138 (1): 5- 12.
doi: 10.1093/jb/mvi097 |
| 12 |
HAQQ C M , KING C Y , UKIYAMA E , et al. Molecular basis of mammalian sexual determination: activation of Mullerian inhibiting substance gene expression by SRY[J]. Science, 1994, 266 (5190): 1494- 1500.
doi: 10.1126/science.7985018 |
| 13 |
GAO Y , WANG Z , LONG Y , et al. Unveiling the roles of Sertoli cells lineage differentiation in reproductive development and disorders: a review[J]. Front Endocrinol (Lausanne), 2024, 15, 1357594.
doi: 10.3389/fendo.2024.1357594 |
| 14 |
HAQQ C M , KING C Y , DONAHOE P K , et al. SRY recognizes conserved DNA sites in sex-specific promoters[J]. Proc Natl Acad Sci U S A, 1993, 90 (3): 1097- 1101.
doi: 10.1073/pnas.90.3.1097 |
| 15 |
LAMBETH L S , MORRIS K R , WISE T G , et al. Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype[J]. Endocrinology, 2016, 157 (1): 83- 90.
doi: 10.1210/en.2015-1697 |
| 16 | 马梦婷, 高庆华, 董琴, 等. 哺乳动物SRY基因分子生物学及性别决定以外的功能[J]. 畜牧与兽医, 2014, 46 (10): 109- 112. |
| MA M T , GAO Q H , DONG Q , et al. Functions other than molecular biology and sex determination of mammalian SRY gene[J]. Animal Husbandry and Veterinary Medicine, 2014, 46 (10): 109- 112. | |
| 17 |
ROTGERS E , J∅RGENSEN A , YAO H H-C . At the crossroads of fate-somatic cell lineage specification in the fetal gonad[J]. Endocr Rev, 2018, 39 (5): 739- 759.
doi: 10.1210/er.2018-00010 |
| 18 | 杨敏, 林思远, 杨长淇, 等. SOX9及其增强子在哺乳动物性别决定中的研究进展[J]. 遗传, 2024, 46 (9): 677- 689. |
| YANG M , LIN S Y , YANG C Q , et al. Progress on SOX9 and its enhancers in mammalian sex determination[J]. Hereditas, 2024, 46 (9): 677- 689. | |
| 19 |
LUO X , GUO J , ZHANG J , et al. Overview of chicken embryo genes related to sex differentiation[J]. PeerJ, 2024, 12, e17072.
doi: 10.7717/peerj.17072 |
| 20 |
IOANNIDIS J , TAYLOR G , ZHAO D , et al. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics[J]. Proc Natl Acad Sci U S A, 2021, 118 (10): e2020909118.
doi: 10.1073/pnas.2020909118 |
| 21 |
LAMBETH L S , RAYMOND C S , ROESZLER K N , et al. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads[J]. Dev Biol, 2014, 389 (2): 160- 172.
doi: 10.1016/j.ydbio.2014.02.012 |
| 22 |
SMITH C A , KATZ M , SINCLAIR A H . DMRT1 is upregulated in the gonads during female-to-male sex reversal in ZW chicken embryos[J]. Biol Reprod, 2003, 68 (2): 560- 570.
doi: 10.1095/biolreprod.102.007294 |
| 23 |
MI M , QIAN G , SUN W , et al. Function analysis of Dmrt1 in male sexual differentiation in Pelodiscus sinensis[J]. Scientia Sinica Vitae, 2015, 45 (9): 881- 889.
doi: 10.1360/N052015-00169 |
| 24 |
SUN W , CAI H , BAO H , et al. Molecular cloning and expression pattern of and its preliminary functional analysis in male sexual differentiation[J]. Scientia Sinica Vitae, 2016, 46 (12): 1423- 1433.
doi: 10.1360/N052016-00227 |
| 25 |
QIAN G , HAN W , CAI H , et al. Functional characterization of Cyp19a in female sexual differentiation in Pelodiscus sinens[J]. Scientia Sinica Vitae, 2017, 47 (6): 640- 649.
doi: 10.1360/N052017-00051 |
| 26 | GE C , YE J , ZHANG H , et al. Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination[J]. Development, 2017, 144 (12): 2222- 2233. |
| 27 |
HATKEVICH T , TEZAK B M , ACEMEL R D , et al. Gonadal sex and temperature independently influence germ cell differentiation and meiotic progression in Trachemys scripta[J]. Proc Natl Acad Sci U S A, 2025, 122 (1): e2413191121.
doi: 10.1073/pnas.2413191121 |
| 28 |
MATSUMOTO Y , YATSU R , TAYLOR C , et al. Changes in gonadal gene network by exogenous ligands in temperature-dependent sex determination[J]. J Mol Endocrinol, 2013, 50 (3): 389- 400.
doi: 10.1530/JME-12-0260 |
| 29 |
SMITH C A , SHOEMAKER C M , ROESZLER K N , et al. Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development[J]. BMC Dev Biol, 2008, 8 (1): 72.
doi: 10.1186/1471-213X-8-72 |
| 30 |
WADA M , FUJITANI K , TAMURA K , et al. Masculinization-related genes and cell-mass structures during early gonadal differentiation in the African Clawed Frog (Xenopus laevis)[J]. Zool Sci, 2017, 34 (2): 105- 111.
doi: 10.2108/zs160185 |
| 31 | MAWARIBUCHI S , MUSASHIJIMA M , WADA M , et al. Molecular evolution of two distinct Dmrt1 promoters for germ and somatic cells in vertebrate gonads[J]. Mol Biol Evol, 2017, 34 (3): 724- 733. |
| 32 | 刘佳, 李忻怡, 张育辉. 两栖动物性别决定相关基因的研究进展[J]. 动物学杂志, 2011, 46 (6): 134- 140. |
| LIU J , LI X Y , ZHANG Y H . Sex determination-related genes in Amphibians[J]. Chinese Journal of Zoology, 2011, 46 (6): 134- 140. | |
| 33 |
SUGITA J , TAKASE M , NAKAMURA M . Expression of Dax-1 during gonadal development of the frog[J]. Gene, 2001, 280 (1-2): 67- 74.
doi: 10.1016/S0378-1119(01)00739-9 |
| 34 |
YOSHIMOTO S , IKEDA N , IZUTSU Y , et al. Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system[J]. Development, 2010, 137 (15): 2519- 2526.
doi: 10.1242/dev.048751 |
| 35 |
HAYASHI S , TAMURA K , TSUKAMOTO D , et al. Promoter generation for the chimeric sex-determining gene DM-W in Xenopus frogs[J]. Genes Genet Syst, 2023, 98 (2): 53- 60.
doi: 10.1266/ggs.22-00137 |
| 36 |
MATSUDA M , NAGAHAMA Y , SHINOMIYA A , et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish[J]. Nature, 2002, 417 (6888): 559- 563.
doi: 10.1038/nature751 |
| 37 |
LUO Y S , HU W , LIU X C , et al. Molecular cloning and mRNA expression pattern of Sox9 during sex reversal in orange-spotted grouper (Epinephelus coioides)[J]. Aquaculture, 2010, 306 (1-4): 322- 328.
doi: 10.1016/j.aquaculture.2010.06.019 |
| 38 |
TAKEHANA Y , MATSUDA M , MYOSHO T , et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena[J]. Nat Commun, 2014, 5, 4157.
doi: 10.1038/ncomms5157 |
| 39 |
ZHANG Z , ZHU B , Chen W , et al. Anti-Mullerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish[J]. Mol Cell Endocrinol, 2020, 517, 110963.
doi: 10.1016/j.mce.2020.110963 |
| 40 |
LIN Q , MEI J , LI Z , et al. Distinct and cooperative roles of Amh and Dmrt1 in self-renewal and differentiation of male germ cells in Zebrafish[J]. Genetics, 2017, 207 (3): 1007- 1022.
doi: 10.1534/genetics.117.300274 |
| 41 |
JIANG D N , YANG H H , LI M H , et al. Gsdf is a downstream gene of Dmrt1 that functions in the male sex determination pathway of the Nile tilapia[J]. Mol Reprod Dev, 2016, 83 (6): 497- 508.
doi: 10.1002/mrd.22642 |
| 42 |
KANEKO H , IJIRI S , KOBAYASHI T , et al. Gonadal soma-derived factor (Gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus[J]. Mol Cell Endocrinol, 2015, 415, 87- 99.
doi: 10.1016/j.mce.2015.08.008 |
| 43 |
WANG D S , ZHOU L Y , KOBAYASHI T , et al. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia[J]. Endocrinology, 2010, 151 (3): 1331- 1340.
doi: 10.1210/en.2009-0999 |
| 44 | 宋卓, 强俊, 朱昊俊, 等. 鱼类性别调控基因Cyp19a的研究进展[J]. 黑龙江畜牧兽医, 2022 (3): 25- 29. |
| SONG Z , QIANG J , ZHU H J , et al. Research progress of fish sex regulatory gene Cyp19a[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022 (3): 25- 29. | |
| 45 | 李云航, 孙鹏. 鱼类性别决定机制及相关基因研究进展[J]. 现代渔业信息, 2011, 26 (12): 10- 15. |
| LI Y H , SUN P . Research progress on sex determination mechanism and related genes in fish[J]. Modern Fisheries Information, 2011, 26 (12): 10- 15. | |
| 46 |
MATTEI A L , BAILLY N , MEISSNER A . DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38 (7): 676- 707.
doi: 10.1016/j.tig.2022.03.010 |
| 47 |
ANGELONI A , BOGDANOVIC O . Sequence determinants, function, and evolution of CpG islands[J]. Biochem Soc Trans, 2021, 49 (3): 1109- 1119.
doi: 10.1042/BST20200695 |
| 48 |
STEFANSSON O A , SIGURPALSDOTTIR B D , ROGNVALDSSON S , et al. The correlation between CpG methylation and gene expression is driven by sequence variants[J]. Nat Genet, 2024, 56 (8): 1624- 1631.
doi: 10.1038/s41588-024-01851-2 |
| 49 |
NISHIYAMA A , NAKANISHI M . Navigating the DNA methylation landscape of cancer[J]. Trends Genet, 2021, 37 (11): 1012- 1027.
doi: 10.1016/j.tig.2021.05.002 |
| 50 |
FU S , BOERS R G , BOERS J B , et al. Genome-wide methylation sequencing to identify DNA methylation markers for early-stage hepatocellular carcinoma in liver and blood[J]. J Exp Clin Cancer Res, 2025, 44 (1): 144.
doi: 10.1186/s13046-025-03412-9 |
| 51 |
XIANG X , HE Y , ZHANG Z , et al. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance[J]. Nat Commun, 2024, 15 (1): 2164.
doi: 10.1038/s41467-024-46480-9 |
| 52 |
KUROKI S , TACHIBANA M . Epigenetic regulation of mammalian sex determination[J]. Mol Cell Endocrinol, 2018, 468, 31- 38.
doi: 10.1016/j.mce.2017.12.006 |
| 53 |
OKASHITA N , TACHIBANA M . Transcriptional regulation of the Y-linked mammalian testis-determining gene SRY[J]. Sex Dev, 2021, 15 (5-6): 351- 359.
doi: 10.1159/000519217 |
| 54 |
KUMAR C , ROY J K . Decoding the epigenetic mechanism of mammalian sex determination[J]. Exp Cell Res, 2024, 439 (1): 114011.
doi: 10.1016/j.yexcr.2024.114011 |
| 55 |
WARR N , SIGGERS P , MAY J , et al. Gadd45g is required for timely Sry expression independently of RSPO1 activity[J]. Reproduction, 2022, 163 (6): 333- 340.
doi: 10.1530/REP-21-0443 |
| 56 | ENGEL N , TRONT J S , ERINLE T , et al. Conserved DNA methylation in Gadd45a-/- mice[J]. Epigenetics, 2014, 4 (2): 98- 99. |
| 57 |
WARR N , CARRE G A , SIGGERS P , et al. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression[J]. Dev Cell, 2012, 23 (5): 1020- 1031.
doi: 10.1016/j.devcel.2012.09.016 |
| 58 |
BARRETO G , SCHAEFER A , MARHOLD J , et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation[J]. Nature, 2007, 445 (7128): 671- 675.
doi: 10.1038/nature05515 |
| 59 |
NURISLAMOV A , LAGUNOV T , GRIDINA M , et al. Single-cell DNA methylation analysis of chicken lampbrush chromosomes[J]. Int J Mol Sci, 2022, 23 (20): 12601.
doi: 10.3390/ijms232012601 |
| 60 |
LV X , SUN C , LIU X , et al. Key events in the process of sex determination and differentiation in early chicken embryos[J]. Anim Biosci, 2025, 38 (6): 1081- 1104.
doi: 10.5713/ab.24.0679 |
| 61 |
MELAMED E , ARNOLD A P . The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome[J]. Chromosome Res, 2009, 17 (6): 727- 736.
doi: 10.1007/s10577-009-9068-4 |
| 62 |
MELAMED E , ARNOLD A P . Regional differences in dosage compensation on the chicken Z chromosome[J]. Genome Biol, 2007, 8 (9): R202.
doi: 10.1186/gb-2007-8-9-r202 |
| 63 |
SUN D , MANEY D L , LAYMAN T S , et al. Regional epigenetic differentiation of the Z Chromosome between sexes in a female heterogametic system[J]. Genome Res, 2019, 29 (10): 1673- 1684.
doi: 10.1101/gr.248641.119 |
| 64 |
RADHAKRISHNAN S , LITERMAN R , MIZOGUCHI B , et al. MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination[J]. Epigenetics Chromatin, 2017, 10, 28.
doi: 10.1186/s13072-017-0136-2 |
| 65 |
DONG J , XIONG L , DING H , et al. Characterization of deoxyribonucleic methylation and transcript abundance of sex-related genes during tempera ture-dependent sex determination in Mauremys reevesii?[J]. Biol Reprod, 2020, 102 (1): 27- 37.
doi: 10.1093/biolre/ioz147 |
| 66 |
PELLEGRINI M , PANTANO S , LUCCHINI F , et al. Emx2 developmental expression in the primordia of the reproductive and excretory systems[J]. Anat Embryol, 1997, 196 (6): 427- 433.
doi: 10.1007/s004290050110 |
| 67 | PARROTT B B , KOHNO S , CLOY-MCCOY J A , et al. Differential incubation temperatures result in dimorphic DNA methylation patterning of the SOX9 and aromatase promoters in gonads of alligator (Alligator mississippiensis) embryos[J]. Biol Reprod, 2014, 90 (1): 2. |
| 68 |
MATSUMOTO Y , BUEMIO A , CHU R , et al. Epigenetic control of gonadal aromatase (Cyp19a1) in temperature-dependent sex determination of red-eared slider turtles[J]. PLoS One, 2013, 8 (6): e63599.
doi: 10.1371/journal.pone.0063599 |
| 69 |
HU Q , TIAN H , MENG Y , et al. Characterization and tissue distribution of Lhx9 and Lhx9α in Chinese giant salamander Andrias davidianus[J]. J Genet, 2016, 95 (3): 683- 690.
doi: 10.1007/s12041-016-0685-3 |
| 70 |
SUN L X , WANG Y Y , ZHAO Y , et al. Global DNA methylation changes in Nile tilapia gonads during high temperature-induced masculinization[J]. PLoS One, 2016, 11 (8): e0158483.
doi: 10.1371/journal.pone.0158483 |
| 71 |
BAROILLER J F , D'COTTA H . The reversible sex of gonochoristic fish: insights and consequences[J]. Sex Dev, 2016, 10 (5-6): 242- 266.
doi: 10.1159/000452362 |
| 72 |
NAVARRO-MARTIN L , VINAS J , RIBAS L , et al. DNA methylation of the gonadal aromatase (Cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass[J]. PLoS Genet, 2011, 7 (12): e1002447.
doi: 10.1371/journal.pgen.1002447 |
| 73 | WU G C , LI H W , HUANG C H , et al. The testis is a primary factor that contributes to epigenetic modifications in the ovaries of the Protandrous Black Porgy, Acanthopagrus schlegelii[J]. Biol Reprod, 2016, 94 (6): 132. |
| 74 |
WEN A Y , YOU F , SUN P , et al. CpG methylation of Dmrt1 and Cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus[J]. J Fish Biol, 2014, 84 (1): 193- 205.
doi: 10.1111/jfb.12277 |
| 75 |
ZHANG Y , ZHANG S , LIU Z , et al. Epigenetic modifications during sex change repress gonadotropin stimulation of Cyp19a1a in a Teleost Ricefield Eel (Monopterus albus)[J]. Endocrinology, 2013, 154 (8): 2881- 2890.
doi: 10.1210/en.2012-2220 |
| 76 |
BAI J , GONG W , WANG C , et al. Dynamic methylation pattern of Cyp19a1a core promoter during zebrafish ovarian folliculogenesis[J]. Fish Physiol Biochem, 2016, 42 (3): 947- 954.
doi: 10.1007/s10695-015-0187-x |
| 77 |
DOMINGOS J A , BUDD A M , BANH Q Q , et al. Sex-specific Dmrt1 and Cyp19a1 methylation and alternative splicing in gonads of the protandrous hermaphrodite barramundi[J]. PLoS One, 2018, 13 (9): e0204182.
doi: 10.1371/journal.pone.0204182 |
| 78 | 王飞龙. DNA甲基化酶在尼罗罗非鱼性腺分化和性腺发育中的功能研究[D]. 重庆: 西南大学, 2022. |
| WANG F L. Roles of DNA methyltransferases in sex differentiation and gonadal development in Nile tilapia[D]. Chongqing: Southwest University, 2022. (in Chinese) | |
| 79 |
JIA Y , ZHENG J , CHI M , et al. Molecular identification of Dmrt1 and its promoter CpG methylation in correlation with gene expression during gonad development in Culter alburnus[J]. Fish Physiol Biochem, 2019, 45 (1): 245- 252.
doi: 10.1007/s10695-018-0558-1 |
| 80 |
SHAO C , LI Q , CHEN S , et al. Epigenetic modification and inheritance in sexual reversal of fish[J]. Genome Res, 2014, 24 (4): 604- 615.
doi: 10.1101/gr.162172.113 |
| [1] | 严文岚, 冯宇, 薛天骐, 张子豪, 那仁毕力格, 蒋卉. 野生动物布鲁氏菌病流行现状与分析[J]. 畜牧兽医学报, 2025, 56(9): 4253-4266. |
| [2] | 余时隆, 岳潇雨, 栾悦, 王勤. 动物皮肤伤口愈合的分子机制与创新治疗策略[J]. 畜牧兽医学报, 2025, 56(9): 4267-4278. |
| [3] | 郑云畅, 侯睿霖, 梁晓贺, 杨利丹, 张银蛟, 霍浩楠, 陈玮娜, 张萃, 李世杰. 牛FOXP2基因的单等位基因表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2025, 56(9): 4369-4378. |
| [4] | 郑永杰, 孙同玉, 胡凤明, 魏曼琳, 马涛. 白藜芦醇调控反刍动物生产性能、产品品质与健康状态的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3631-3639. |
| [5] | 李文超, 李维俏, 李欣, 王家庆, 张雅为, 李俊平. 动物源细菌耐药性及中药消减耐药性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2555-2576. |
| [6] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
| [7] | 陈云, 陈丽圆, 宋文静, 张新科, 徐菡, 吴嘉仪, 赵翠燕, 张守全. T-2毒素对雄性动物生殖系统毒害机制的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2038-2046. |
| [8] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
| [9] | 陈婷, 崔亚东, 兰伟, 孔祥峰. 氨基葡萄糖的功能及其在动物生产中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1518-1526. |
| [10] | 邢静怡, 郭晓萌, 王蒙, 管鑫, 邱亮, 李安琪, 张庆利, 黄倢. 十足目虹彩病毒病诊断方法的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1549-1560. |
| [11] | 苏蒙, 刘莎, 宋丹丽, 高倩梅, 郑麦青, 文杰, 赵桂苹, 李庆贺. 基于转录组测序筛选肉鸡腹水综合征相关候选基因[J]. 畜牧兽医学报, 2025, 56(2): 559-570. |
| [12] | 吕永乐, 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞, 栾新红. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56(1): 45-62. |
| [13] | 孙同玉, 马涛. 反刍动物初乳microRNA组成和功能研究进展[J]. 畜牧兽医学报, 2025, 56(1): 74-81. |
| [14] | 张蕾, 陈亮, 冯万宇, 兰世捷, 苗艳, 田秋丰, 白长胜, 张备, 董佳强, 江波涛, 王洪宝, 史同瑞, 黄宣凯. 生物被膜在动物细菌感染致病机理中的作用[J]. 畜牧兽医学报, 2025, 56(1): 107-114. |
| [15] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||