[1]RODRIGUEZ L L, GAY C G. Development of vaccines toward the global control and eradication of foot-and-mouth disease[J]. Expert Rev Vaccines, 2011, 10(3):377-387.[2]GUZMAN E, TAYLOR G, CHARLESTON B, et al. Induction of a cross-reactive CD8+ T cell response following foot-and-mouth disease virus vaccination[J]. J Virol, 2010, 84(23):12375-12384.[3]GREENWOOD D L, DYNON K, KALKANIDIS M, et al. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads[J]. Vaccine, 2008, 26(22):2706-2713.[4]GOLDE W T, DE LOS SANTOS T, ROBINSON L, et al. Evidence of activation and suppression during the early immune response to foot-and-mouth disease virus[J]. Transbound Emerg Dis, 2011, 58(4):283-290.[5]ROBINSON L, WINDSOR M, MCLAUGHLIN K, et al. Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells[J]. J Virol, 2011, 85(5):2212-2223.[6]STEINMAN R M. Decisions about dendritic cells: past, present, and future[J]. Annu Rev Immunol, 2012, 30:1-22.[7]VAN LIERP M J, NILSSON P R, WAGENAAR J P, et al. The influence of MHC polymorphism on the selection of T-cell determinants of FMDV in cattle[J]. Immunology, 1995, 84(1):79-85.[8]BLANCO E, MCCULLOUGH K, SUMMERFIELD A, et al. Interspecies major histocompatibility complex-restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4[J]. J Virol, 2000, 74(10):4902-4907.[9]RUDOLPH M G, STANFIELD R L, WILSON I A. How TCRs bind MHCs, peptides, and coreceptors[J]. Annu Rev Immunol, 2006,24:419-466.[10]李杰, 石玮, 边海霞, 等. 负载灭活口蹄疫病毒树突状细胞对CD8+T细胞的旁位活化效应[J]. 中国免疫学杂志, 2009, 25(8):721-726.[11]SINGH S K, STRENG-OUWEHAND I, LITJENS M, et al. Design of neo-glycoconjugates that target the mannose receptor and enhance TLR-independent cross-presentation and Th1 polarization[J]. Eur J Immunol, 2011, 41(4):916-925.[12]LEWINSOHN D A, GOLD M C, LEWINSOHN D M. Views of immunology: effector T cells[J]. Immunol Rev, 2011, 240(1):25-39.[13]STRUTT T M, MCKINSTRY K K, SWAIN S L. Control of innate immunity by memory CD4 T cells[J]. Adv Exp Med Biol, 2011, 780:57-68.[14]SWAIN S L, MCKINSTRY K K, STRUTT T M. Expanding roles for CD4+ T cells in immunity to viruses[J]. Nat Rev Immunol, 2012, 12(2):136-148.[15]SUN J C, LANIER L L. NK cell development, homeostasis and function: parallels with CD8+ T cells[J]. Nat Rev Immunol, 2011, 11(10):645-657.[16]王若,张丽,张雷,等. 负载灭活口蹄疫病毒树突状细胞活化CD8+T细胞的非蛋白酶体依赖途径[J]. 中国兽医科学,2011, 41(1): 19-24.[17]张丽,石玮, 张雷,等. 负载灭活口蹄疫病毒树突状细胞启动的CD4+T细胞应答[J]. 中国兽医科学, 2011, 41(7):712-716.[18]GUZMAN E, TAYLOR G, CHARLESTON B, et al. An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV[J]. J Gen Virol, 2008, 89(Pt3):667-675.[19]HUANG H, HAO S, LI F, et al. CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes[J]. Immunology, 2007, 120(2):148-159.[20]WHITMIRE J K, TAN J T, WHITTON J L. Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection[J]. J Exp Med, 2005, 201(7):1053-1059.[21]BRIAN P D, LILY L, KAZUYO T, et al. Defective ribosomal products are the major source of antigenic peptides endogenously generated from influenza A virus neuraminidase[J]. J Immunol, 2010, 184(3):1419-1424.[22]PATCH J R, PEDERSEN L E, TOKA F N, et al. Induction of foot-and-mouth disease virus-specific cytotoxic T cell killing by vaccination[J]. Clin Vaccine Immunol, 2011, 18(2):280-288. |