| [1] GE H T, CUI C, LIU J, et al. The growth and reproduction performance of TALEN-mediated β-lactoglobulin-knockout bucks[J]. Transgenic Res, 2016, 25(5):721-729.[2] KUROME M, HISATOMI H, MATSUMOTO S, et al. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer[J]. J Reprod Dev, 2008, 54(4):254-258.
 [3] YIN X J, LEE H S, YU X F, et al. Production of second-generation cloned cats by somatic cell nuclear transfer[J]. Theriogenology, 2008, 69(8):1001-1006.
 [4] SAINI M, SELOKAR N L, AGRAWAL H, et al. Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2'-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression[J]. Cell Reprogram, 2017, 19(3):208-215.
 [5] NIE X W, LIU Q, WANG R G, et al. DNA demethylation pattern of in-vitro fertilized and cloned porcine pronuclear stage embryos[J]. Clin Chim Acta, 2017, 473:45-50.
 [6] ZHANG J, QU P, ZHOU C, et al. microRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming[J]. J Biol Chem, 2017, doi:10.1074/jbc.M117.796771.
 [7] SMITH Z D, MEISSNER A. DNA methylation:roles in mammalian development[J]. Nat Rev Genet, 2013, 14(3):204-220.
 [8] ZHANG X Y, HU M, LYU X, et al. DNA methylation regulated gene expression in organ fibrosis[J]. Biochim Biophys Acta, 2017, 1863(9):2389-2397.
 [9] EDWARDS J R, YARYCHKIVSKA O, BOULARD M, et al. DNA methylation and DNA methyltransferases[J]. Epigenetics Chromatin, 2017, 10:23.
 [10] KAUT O, SHARMA A, SCHMITT I, et al. DNA methylation of imprinted loci of autosomal chromosomes and IGF2 is not affected in Parkinson's disease patients' peripheral blood mononuclear cells[J]. Neurol Res, 2017, 39(3):281-284.
 [11] BARROCA V, LEWANDOWSKI D, JARACZ-ROS A, et al. Paternal insulin-like growth factor 2 (Igf2) regulates stem cell activity during adulthood[J]. EBioMedicine, 2017, 15:150-162.
 [12] 孙晓丽, 李树峰, 佟慧丽, 等. 不同肌肉特异性启动子IGF2表达载体构建及对牛骨骼肌卫星细胞增殖的影响[J]. 畜牧兽医学报, 2015, 46(4):555-560.
 SUN X L, LI S F, TONG H L, et al. The construction of different muscle-specific promoter IGF2 expression vector and its impact on bovine skeletal muscle satellite cell proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(4):555-560. (in Chinese)
 [13] 刘艳利, 申静, 支丽慧, 等. 叶酸调控鸡脾和胸腺IGF2表达的表观遗传机制探究[J]. 畜牧兽医学报, 2016, 47(2):296-304.
 LIU Y L, SHEN J, ZHI L H, et al. The study on epigenetic mechanism of IGF2 expression in spleen and thymus regulated by folic acid in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(2):296-304. (in Chinese)
 [14] PAULSEN M, TAKADA S, YOUNGSON N A, et al. Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region[J]. Genome Res, 2001, 11(12):2085-2094.
 [15] WU K F, LIANG W C, FENG L, et al. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway[J]. Exp Cell Res, 2017, 350(2):312-317.
 [16] LI X P, HAO C L, WANG Q, et al. H19 gene methylation status is associated with male infertility[J]. Exp Ther Med, 2016, 12(1):451-456.
 [17] YANG W W, NING N, JIN X M. The lncRNA H19 promotes cell proliferation by competitively binding to miR-200a and derepressing β-catenin expression in colorectal cancer[J]. Biomed Res Int, 2017, 2017:2767484.
 [18] GIABICANI E, BRIOUDE F, LE BOUC Y, et al. Imprinted disorders and growth[J]. Ann Endocrinol (Paris), 2017, 78(2):112-113.
 [19] BARROW T M, BARAULT L, ELLSWORTH R E, et al. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer[J]. Int J Cancer, 2015, 137(3):537-547.
 [20] LEWIS A, LEE J Y, DONALDSON A V, et al. Increased expression of H19/miR-675 is associated with a low fat-free mass index in patients with COPD[J]. J Cachexia Sarcopenia Muscle, 2016, 7(3):330-344.
 [21] ZHOU J D, LIN J, ZHANG T J, et al. Hypomethylation-mediated H19 overexpression increases the risk of disease evolution through the association with BCR-ABL transcript in chronic myeloid leukemia[J]. J Cell Physiol, 2017, doi:10.1002/jcp.26119.
 [22] MENG L, WAN Y J, SUN Y Y, et al. Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes[J]. PLoS One, 2013, 8(10):e77798.
 [23] LUCIFERO D, SUZUKI J, BORDIGNON V, et al. Bovine SNRPN methylation imprint in oocytes and day 17in vitro-produced and somatic cell nuclear transfer embryos[J]. Biol Reprod, 2006, 75(4):531-538.
 [24] CONSTÂNCIA M, DEAN W, LOPES S, et al. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19[J]. Nat Genet, 2000, 26(2):203-206.
 [25] MURATA A, BABA Y, WATANABE M, et al. IGF2 DMR0 methylation, loss of imprinting, and patient prognosis in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2014, 21(4):1166-1174.
 [26] MURRELL A, HEESON S, BOWDEN L, et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription[J]. EMBO Rep, 2001, 2(12):1101-1106.
 [27] IDERAABDULLAH F Y, VIGNEAU S, BARTOLOMEI M S. Genomic imprinting mechanisms in mammals[J]. Mutat Res, 2008, 647(1-2):77-85.
 [28] WOLFFE A P. Transcriptional control:imprinting insulation[J]. Curr Biol, 2000, 10(12):R463-R465.
 [29] HUMPHERYS D, EGGAN K, AKUTSU H, et al. Epigenetic instability in ES cells and cloned mice[J]. Science, 2001, 293(5527):95-97.
 [30] SU J M, YANG B, WANG Y S, et al. Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves[J]. Theriogenology, 2011, 75(7):1346-1359.
 [31] WU X, ZHANG Y. TET-mediated active DNA demethylation:mechanism, function and beyond[J]. Nat Rev Genet, 2017, 18(9):517-534.
 [32] PIYASENA C, CARTIER J, PROVENCAL N, et al. Dynamic changes in DNA methylation occur during the first year of life in preterm infants[J]. Front Endocrinol (Lausanne), 2016, 7:158.
 [33] JACKSON-GRUSBY L, BEARD C, POSSEMATO R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation[J]. Nat Genet, 2001, 27(1):31-39.
 [34] LIU L Z, MAO S Q, RAY C, et al. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells[J]. Stem Cell Res, 2015, 15(2):435-443.
 [35] BERMEJO-ÁLVAREZ P, RAMOS-IBEAS P, PARK K E, et al. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells[J]. Sci Rep, 2015, 5:13691.
 [36] WAKAYAMA S, KOHDA T, OBOKATA H, et al. Successful serial recloning in the mouse over multiple generations[J]. Cell Stem Cell, 2013, 12(3):293-297.
 |